1. Let BD is 80m wide road and AB and CD are the two equal poles. Let AB = CD = x In ΔABO, AB/BO = tan 60° ⇒ x/BO = √3 ⇒ BO = x/√3 In ΔCDO, CD/DO = tan 30° ⇒ x/(80-BO) = 1/√3 ⇒ x√3 = 80 - BO ⇒ x√3 = 80 - x/√3 [Putting the value of BO] ⇒ x√3 + x/√3 = 80 ⇒ 3x + x = 80√3 ⇒ 4x = 80√3 ⇒ x = 20√3 Therefore,Read more

    Let BD is 80m wide road and AB and CD are the two equal poles.
    Let AB = CD = x
    In ΔABO,
    AB/BO = tan 60° ⇒ x/BO = √3 ⇒ BO = x/√3
    In ΔCDO,
    CD/DO = tan 30° ⇒ x/(80-BO) = 1/√3 ⇒ x√3 = 80 – BO
    ⇒ x√3 = 80 – x/√3 [Putting the value of BO]
    ⇒ x√3 + x/√3 = 80 ⇒ 3x + x = 80√3 ⇒ 4x = 80√3 ⇒ x = 20√3
    Therefore, BO = x/√3 = 20√3/√3 = 20
    DO = BD – BO = (80 – 20) m = 60 m
    Hence, the height of pole is 20√3 m and distance of poles from the point is 20m and 60m.

    See less
    • 1
  2. Let AB is TV tower and BC is width of the canal. In ΔABC, AB/BC = tan 60° ⇒ AB/BC = √3 ⇒ BC = AB√3 In ΔABD, AB/BD = tan 30° ⇒ AB/(BC+CD) = 1/√3 ⇒ AB/(AB/√3+CD) = 1/√3 [Putting the value of BC] ⇒ AB√3/(AB + 20√3) = 1/√3 ⇒ 3AB = AB + 20√3 ⇒ 2AB = 20√3 ⇒AB = 10√3 Therefore, BC = AB/√3 = 10√3/√3= 10 HenRead more

    Let AB is TV tower and BC is width of the canal. In ΔABC,
    AB/BC = tan 60° ⇒ AB/BC = √3
    ⇒ BC = AB√3
    In ΔABD,
    AB/BD = tan 30° ⇒ AB/(BC+CD) = 1/√3
    ⇒ AB/(AB/√3+CD) = 1/√3 [Putting the value of BC]
    ⇒ AB√3/(AB + 20√3) = 1/√3 ⇒ 3AB = AB + 20√3 ⇒ 2AB = 20√3 ⇒AB = 10√3
    Therefore, BC = AB/√3 = 10√3/√3= 10
    Hence, the height of the tower is 10√3m and the width of tower is 10m.

    See less
    • 1