1. In ΔADB, by pythagoras theorem AB² = AD² + DB² ...(1) In ΔACD, by pythagoras theorem AC² = AD² + DC² ⇒AC² = AD² + (DB + BC)² ⇒AC² = AD² + BD² + BC² + 2DB BC ⇒AC² = AB² + BC² + 2DB × BC [From the equation (1)]

    In ΔADB, by pythagoras theorem
    AB² = AD² + DB² …(1)
    In ΔACD, by pythagoras theorem
    AC² = AD² + DC²
    ⇒AC² = AD² + (DB + BC)²
    ⇒AC² = AD² + BD² + BC² + 2DB BC
    ⇒AC² = AB² + BC² + 2DB × BC [From the equation (1)]

    See less
    • 3
  2. In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA. In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = ...(1) In ΔDEB. by pythagoras theorem, DE² + EB² = DB² ⇒ DE² + (EA + AB)² = DB² ⇒ (DE² + EA²) + AB² + 2EA × AB = DB² ⇒ DA² + AB² + 2EA × AB = DB² ...(ii) In ΔADF, by PythagoraRead more

    In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA.
    In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = …(1)
    In ΔDEB. by pythagoras theorem, DE² + EB² = DB²
    ⇒ DE² + (EA + AB)² = DB²
    ⇒ (DE² + EA²) + AB² + 2EA × AB = DB²
    ⇒ DA² + AB² + 2EA × AB = DB² …(ii)
    In ΔADF, by Pythagoras theorem, AD² = AF² + FD²
    In ΔAFC, by pythagoras theorem
    AC² = AF² + FC² = AF² + (DC – FD)² = AF² + DC² + FD² – 2DC × FD
    = (AF² + FD²) + DC² – 2DC × FD
    ⇒ AC² = AD² + DC² – 2DC × FD …(iii)
    ABCD is a parallelogram.
    Therefore
    AB = CD …(iv)
    and, BC = AD …(v)
    In ΔDEA and ΔADF,
    ∠DEA = ∠AFD [Each 90]
    ∠EAD = ∠ADF [EA II DF]
    AD = AD [Common]
    ∴ΔEAD ≅ ΔFDA [AAS congruency rule]
    ⇒ EA = DF …(vi)
    Adding equations (ii) and (iii), we have
    DA² + AB² + 2EA AB + AD² + DC² – 2DC FD = DB² + AC²
    ⇒ DA² + AB² + AD² + DC² + 2EA × AB – 2DC × FD = DB² + AC²
    ⇒ BC² + AB² + AD² + DC² + 2EA × AB – 2AB × EA = DB² + AC² [From the equation (iv) and (vi)]
    ⇒ AB² + BC² + CD² + DA² = AC² + BD²

    See less
    • 3
  3. Let AB is 75 m high lighthouse and C and D are the two ships. In ΔABC, AB/BC = tan 45° ⇒ 75/BC = 1 ⇒ BC = 75 In ΔABD, AB/BD = tan 30° ⇒ 75/(BC + CD) = 1/√3 ⇒ 75/(75 + CD) = 1/√3 ⇒ 75 + CD = 75√3 ⇒ CD = 75(√3 - 1) Hence, the distance between the two ships is 75(√3 - 1).

    Let AB is 75 m high lighthouse and C and D are the two ships.
    In ΔABC,
    AB/BC = tan 45° ⇒ 75/BC = 1
    ⇒ BC = 75
    In ΔABD,
    AB/BD = tan 30°
    ⇒ 75/(BC + CD) = 1/√3
    ⇒ 75/(75 + CD) = 1/√3
    ⇒ 75 + CD = 75√3
    ⇒ CD = 75(√3 – 1)
    Hence, the distance between the two ships is 75(√3 – 1).

    See less
    • 1
  4. Let CD is 1.2m high girl and FG is the distance travelled by balloon. In ΔACE, AE/CE = tan 60° ⇒ (AF - EF)/CE = √3 ⇒ (88.2 - 1.2)/CE = √3 ⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3 In ΔBCG, BG/GC = tan 30° ⇒ 88.2 - 1.2/CG = 1/√3 ⇒ 87/CG = 1/√3 ⇒ CG = 87√3 Distance travelled by balloon = EG = CG - CERead more

    Let CD is 1.2m high girl and FG is the distance travelled by balloon.
    In ΔACE,
    AE/CE = tan 60°
    ⇒ (AF – EF)/CE = √3
    ⇒ (88.2 – 1.2)/CE = √3
    ⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3
    In ΔBCG,
    BG/GC = tan 30° ⇒ 88.2 – 1.2/CG = 1/√3
    ⇒ 87/CG = 1/√3 ⇒ CG = 87√3
    Distance travelled by balloon = EG = CG – CE = 87√3 – 29√3 = 58√3
    Hence, the distance travelled by balloon is 58√3m.

    See less
    • 1
  5. Let CD is highway and AB is tower. C is the initial position of the car and D is the position after 6 seconds. In ΔABD, AB/DB = tan 60° ⇒ AB/DB = √3 ⇒ BD = AB/√3 In ΔABC, AB/BC = tan 30° ⇒ AB/(BD + DC) = 1/√3 ⇒ AB√3 = BD + DC ⇒ AB = AB/√3 + DC [putting the value of BD] ⇒ AB√3 - AB/√3 = DC ⇒ DC = (3ARead more

    Let CD is highway and AB is tower. C is the initial position of the car and D is the position after 6 seconds.
    In ΔABD,
    AB/DB = tan 60° ⇒ AB/DB = √3 ⇒ BD = AB/√3
    In ΔABC,
    AB/BC = tan 30°
    ⇒ AB/(BD + DC) = 1/√3
    ⇒ AB√3 = BD + DC
    ⇒ AB = AB/√3 + DC [putting the value of BD]
    ⇒ AB√3 – AB/√3 = DC
    ⇒ DC = (3AB – AB)/√3 = 2AB/√3
    The time taken to travelled CD (= 2AB/√3) distance = 6 second
    Therefore, the speed of the car = distance/time = (2AB/√3)/6 = AB/3√3 m/s
    The time taken to travelled BD (= AB/√3) distance = distance/speed = (AB/√3)/ (AB/3√3) = 3 second.
    Hence, car will take 3 seconds to reach the foot of the car.

    See less
    • 1