(i) 103 x 107 = (100 + 3)(100 + 7) = (100)² + (3 + 7)100 + 3 x 7 [∵ (x + a)(x + b) = x² + (a + b)x + ab ] = 10000 + 1000 + 21 = 11021 See this for video explanation of this answer✌😁
(i) 103 x 107
= (100 + 3)(100 + 7)
= (100)² + (3 + 7)100 + 3 x 7 [∵ (x + a)(x + b) = x² + (a + b)x + ab ]
= 10000 + 1000 + 21 = 11021
Use suitable identities to find the following products: (y²+3/2) (y²-3/2)
(iv) (y² + 3/2)(y² - 3/2) = (y²)² - (3/2)² [∵ (a + b)(a - b) = a² - b²] = y⁴ - 9/4
(iv) (y² + 3/2)(y² – 3/2)
See less= (y²)² – (3/2)² [∵ (a + b)(a – b) = a² – b²]
= y⁴ – 9/4
Use suitable identities to find the following products: (3 – 2x) (3 + 2x)
(v) (3 - 2x)(3 + 2x) = (3)² - (2x)² [∵ (a + b)(a - b) = a² - b²] = 9 - 4x²
(v) (3 – 2x)(3 + 2x)
See less= (3)² – (2x)² [∵ (a + b)(a – b) = a² – b²]
= 9 – 4x²
Evaluate the following products without multiplying directly: 103 × 107
(i) 103 x 107 = (100 + 3)(100 + 7) = (100)² + (3 + 7)100 + 3 x 7 [∵ (x + a)(x + b) = x² + (a + b)x + ab ] = 10000 + 1000 + 21 = 11021 See this for video explanation of this answer✌😁
(i) 103 x 107
= (100 + 3)(100 + 7)
= (100)² + (3 + 7)100 + 3 x 7 [∵ (x + a)(x + b) = x² + (a + b)x + ab ]
= 10000 + 1000 + 21 = 11021
See this for video explanation of this answer✌😁
See lessEvaluate the following products without multiplying directly: 95 × 96
(ii) 95 x 96 (100 - 5)(100 - 4) = (100)² + (-5 - 4)100 +(-5) x (-4) [∵ (x + a)(x + b) = x² + (a + b)x + ab ] = 10000 - 900 + 20 = 9120
(ii) 95 x 96
See less(100 – 5)(100 – 4)
= (100)² + (-5 – 4)100 +(-5) x (-4) [∵ (x + a)(x + b) = x² + (a + b)x + ab ]
= 10000 – 900 + 20 = 9120
Evaluate the following products without multiplying directly: 104 × 96
(iii) 104 x 96 (100 + 4)(100 - 4) = (100)² - (4)² [∵ (a + b)(a - b) = a² - b²] = 10000 - 16 = 9984
(iii) 104 x 96
See less(100 + 4)(100 – 4)
= (100)² – (4)² [∵ (a + b)(a – b) = a² – b²]
= 10000 – 16 = 9984