1. Here, a = 9, d = 17 - 9 = 8 and S_n = 636. The sum of n terms of an AP is given by S_n = n/2[2a + (n -1)d] ⇒ 636 = n/2[2(9) + (n -1)(8)] ⇒ 636 = n[9 + 4n - 4] ⇒ 4n² + 5n - 636 = 0 ⇒ 4n² + 53n - 48n - 636 = 0 ⇒ n(4n + 53) - 12(4n + 53) = 0 ⇒ (n - 12)(4n + 53) = 0 ⇒ n - 12 = 0 [∵ sn + 53 ≠ 0 as n ≠ -Read more

    Here, a = 9, d = 17 – 9 = 8 and S_n = 636.
    The sum of n terms of an AP is given by
    S_n = n/2[2a + (n -1)d]
    ⇒ 636 = n/2[2(9) + (n -1)(8)]
    ⇒ 636 = n[9 + 4n – 4]
    ⇒ 4n² + 5n – 636 = 0
    ⇒ 4n² + 53n – 48n – 636 = 0
    ⇒ n(4n + 53) – 12(4n + 53) = 0
    ⇒ (n – 12)(4n + 53) = 0
    ⇒ n – 12 = 0 [∵ sn + 53 ≠ 0 as n ≠ – 53/4]
    ⇒ n = 12
    Hence, 12 terms of the AP: 9, 17, 25 … must be taken to get the sum 636.

    See less
    • 1
  2. Here, a = 5, a_n = 45 and S_n = 400. The sum of n terms of an AP is given by S_n = n/2[a + a_n] ⇒ 400 = n/2[5 + 45] ⇒ 400 = 25n ⇒ n = 400/25 = 16 a_n = a + (n - 1)d ⇒ 45 = 5 + (16 - 1)d ⇒ 40 = 15d ⇒ d = 40/15 = 8/3 Hence, the number of term are 16 and the common difference is 8/3.

    Here, a = 5, a_n = 45 and S_n = 400.
    The sum of n terms of an AP is given by
    S_n = n/2[a + a_n]
    ⇒ 400 = n/2[5 + 45]
    ⇒ 400 = 25n
    ⇒ n = 400/25 = 16
    a_n = a + (n – 1)d
    ⇒ 45 = 5 + (16 – 1)d
    ⇒ 40 = 15d
    ⇒ d = 40/15 = 8/3
    Hence, the number of term are 16 and the common difference is 8/3.

    See less
    • 1
  3. Here, a = 17, a_n = 350 and d = 9. a_n = a + (n - 1)d ⇒ 350 = 17 + (n -1)9 ⇒ 350 = 8 + 9n ⇒ n = 342/9 = 38 The sum of n terms of an AP is given by S_n = n/2[a + a_n] ⇒ S₃₈ = 38/2[17 + 350] ⇒ S₃₈ = 19 × 367 = 6973 Hence, there are 38 terms and their sum is 6973.

    Here, a = 17, a_n = 350 and d = 9.
    a_n = a + (n – 1)d
    ⇒ 350 = 17 + (n -1)9
    ⇒ 350 = 8 + 9n
    ⇒ n = 342/9 = 38
    The sum of n terms of an AP is given by
    S_n = n/2[a + a_n]
    ⇒ S₃₈ = 38/2[17 + 350]
    ⇒ S₃₈ = 19 × 367
    = 6973
    Hence, there are 38 terms and their sum is 6973.

    See less
    • 1
  4. Here, a = 34 and d = 32 - 34 = - 2. Let, the nth term of the A.P. is 10. Therefore, a_n = 10 ⇒ a + (n -1)d = 10 ⇒ 34 + (n - 1)(-2) = 10 ⇒ (n -1)(- 2) = - 24 ⇒ n -1 = 12 ⇒ n = 13 The sum of n terms of an AP is given by S_n = n/2[a + l] ⇒ S₁₃ = 13/2[34 + 10] ⇒ S₁₃ = 13/2[44] = 13 × 22 = 286

    Here, a = 34 and d = 32 – 34 = – 2.
    Let, the nth term of the A.P. is 10.
    Therefore, a_n = 10
    ⇒ a + (n -1)d = 10
    ⇒ 34 + (n – 1)(-2) = 10
    ⇒ (n -1)(- 2) = – 24
    ⇒ n -1 = 12
    ⇒ n = 13
    The sum of n terms of an AP is given by
    S_n = n/2[a + l]
    ⇒ S₁₃ = 13/2[34 + 10]

    ⇒ S₁₃ = 13/2[44]
    = 13 × 22 = 286

    See less
    • 1
  5. A.P.: 2, 7, 12, ... Here, a = 2 and d = 7 - 2 = 5 The sum of n terms of an AP is Given by Sn = n/2[2a + (n -1)d] ⇒ S_10 = 10/2[2(2) + (10 - 1)(5)] ⇒ S_10 = 5[4 + 45] = 245.

    A.P.: 2, 7, 12, …
    Here, a = 2 and d = 7 – 2 = 5
    The sum of n terms of an AP is Given by
    Sn = n/2[2a + (n -1)d]
    ⇒ S_10 = 10/2[2(2) + (10 – 1)(5)]
    ⇒ S_10 = 5[4 + 45] = 245.

    See less
    • 1