Camels are well-adapted to survive in hot desert environments with temperatures reaching up to 48°C (120°F) . When the temperature is high, camels feel relief from the heat by increasing their body temperature to 42°C [B]. This allows them to conserve water by reducing the need to sweat and lose preRead more
Camels are well-adapted to survive in hot desert environments with temperatures reaching up to 48°C (120°F) . When the temperature is high, camels feel relief from the heat by increasing their body temperature to 42°C [B]. This allows them to conserve water by reducing the need to sweat and lose precious bodily fluids.
Camels have several other adaptations that help them thrive in the desert heat:
– They have thick fur that insulates them from the sun’s rays during the day and retains heat at night.
– Their humps are made of fat that can be broken down into water and energy when needed.
– They can go for long periods without drinking water by recycling water and salts in their bodies.
So, in summary, the correct answer is; option [B] – camels increase their body temperature to 42°C to reduce water loss through sweating and stay cool in the desert heat.
The reason for the temperature of water at the bottom of the waterfall being higher is; option [C] The kinetic energy of falling water is converted into heat. As water descends in the waterfall, its potential energy is converted into kinetic energy. Upon impact at the bottom, this kinetic energy disRead more
The reason for the temperature of water at the bottom of the waterfall being higher is; option [C] The kinetic energy of falling water is converted into heat. As water descends in the waterfall, its potential energy is converted into kinetic energy. Upon impact at the bottom, this kinetic energy dissipates into the surroundings as heat due to friction with the air and rocks, increasing the water’s temperature. This process is consistent with the law of conservation of energy, where energy changes form but is not created or destroyed. While option [A] implies potential energy differences, it does not directly explain the temperature variation. Options [B] and [D] are not relevant as they do not address the conversion of energy from kinetic to thermal form, which is the primary mechanism responsible for the temperature difference.
The SI unit of temperature is; option [A] Kelvin. Kelvin is the base unit for temperature measurement in the International System of Units (SI). Celsius (option [B]), Centigrade (option [C]), and Fahrenheit (option [D]) are alternative temperature scales. However, Kelvin is the preferred unit in sciRead more
The SI unit of temperature is; option [A] Kelvin. Kelvin is the base unit for temperature measurement in the International System of Units (SI). Celsius (option [B]), Centigrade (option [C]), and Fahrenheit (option [D]) are alternative temperature scales. However, Kelvin is the preferred unit in scientific contexts and is defined based on absolute zero, making it the standard unit for thermodynamic temperature measurements. Celsius and Centigrade scales share the same unit size, while Fahrenheit is a different scale commonly used in the United States. Understanding the distinction between these temperature scales is essential in various scientific fields, particularly in thermodynamics, physics, and engineering, where precise temperature measurements are crucial for accurate calculations and experiments.
Among the options provided; option [D] Degree Celsius is not a unit of heat. Instead, it is a unit of temperature measurement on the Celsius scale. Calorie (option [A]), Kilocalorie (option [B]), and Joule (option [C]) are all units used to quantify heat or energy. They represent different scales foRead more
Among the options provided; option [D] Degree Celsius is not a unit of heat. Instead, it is a unit of temperature measurement on the Celsius scale. Calorie (option [A]), Kilocalorie (option [B]), and Joule (option [C]) are all units used to quantify heat or energy. They represent different scales for measuring the amount of heat or energy transferred. Calorie and Kilocalorie are commonly used in the context of food and nutrition to measure the energy content of food, while Joule is the SI unit of energy and is commonly used in scientific and engineering applications to measure heat, work, and energy transfer. Understanding the distinction between temperature and heat is crucial in various fields, including thermodynamics, physics, and engineering.
The correct answer is option B: Thermal radiation. A bolometer is an instrument used to measure thermal radiation. It detects and quantifies the intensity of infrared or heat radiation emitted by objects. When exposed to thermal radiation, a bolometer undergoes a change in electrical resistance, whiRead more
The correct answer is option B: Thermal radiation. A bolometer is an instrument used to measure thermal radiation. It detects and quantifies the intensity of infrared or heat radiation emitted by objects. When exposed to thermal radiation, a bolometer undergoes a change in electrical resistance, which is then measured to determine the intensity of the radiation. This principle allows bolometers to be used in various applications, including astronomy for studying celestial objects emitting infrared radiation, in thermal imaging devices for detecting heat signatures, and in industrial processes for monitoring temperature and thermal properties. Unlike instruments that measure thermal conductivity, intensity of sound, or specific heat, a bolometer specifically targets thermal radiation, making it a valuable tool in fields where precise measurement of heat energy is necessary for research, monitoring, and analysis.
Even when the temperature reaches 46 °C in summer, a camel feels relief from the heat by
Camels are well-adapted to survive in hot desert environments with temperatures reaching up to 48°C (120°F) . When the temperature is high, camels feel relief from the heat by increasing their body temperature to 42°C [B]. This allows them to conserve water by reducing the need to sweat and lose preRead more
Camels are well-adapted to survive in hot desert environments with temperatures reaching up to 48°C (120°F) . When the temperature is high, camels feel relief from the heat by increasing their body temperature to 42°C [B]. This allows them to conserve water by reducing the need to sweat and lose precious bodily fluids.
Camels have several other adaptations that help them thrive in the desert heat:
– They have thick fur that insulates them from the sun’s rays during the day and retains heat at night.
– Their humps are made of fat that can be broken down into water and energy when needed.
– They can go for long periods without drinking water by recycling water and salts in their bodies.
So, in summary, the correct answer is; option [B] – camels increase their body temperature to 42°C to reduce water loss through sweating and stay cool in the desert heat.
See lessThe temperature of water at the bottom of the waterfall is higher than that at the top. The reason for it being more is
The reason for the temperature of water at the bottom of the waterfall being higher is; option [C] The kinetic energy of falling water is converted into heat. As water descends in the waterfall, its potential energy is converted into kinetic energy. Upon impact at the bottom, this kinetic energy disRead more
The reason for the temperature of water at the bottom of the waterfall being higher is; option [C] The kinetic energy of falling water is converted into heat. As water descends in the waterfall, its potential energy is converted into kinetic energy. Upon impact at the bottom, this kinetic energy dissipates into the surroundings as heat due to friction with the air and rocks, increasing the water’s temperature. This process is consistent with the law of conservation of energy, where energy changes form but is not created or destroyed. While option [A] implies potential energy differences, it does not directly explain the temperature variation. Options [B] and [D] are not relevant as they do not address the conversion of energy from kinetic to thermal form, which is the primary mechanism responsible for the temperature difference.
See lessThe SI unit of temperature is
The SI unit of temperature is; option [A] Kelvin. Kelvin is the base unit for temperature measurement in the International System of Units (SI). Celsius (option [B]), Centigrade (option [C]), and Fahrenheit (option [D]) are alternative temperature scales. However, Kelvin is the preferred unit in sciRead more
The SI unit of temperature is; option [A] Kelvin. Kelvin is the base unit for temperature measurement in the International System of Units (SI). Celsius (option [B]), Centigrade (option [C]), and Fahrenheit (option [D]) are alternative temperature scales. However, Kelvin is the preferred unit in scientific contexts and is defined based on absolute zero, making it the standard unit for thermodynamic temperature measurements. Celsius and Centigrade scales share the same unit size, while Fahrenheit is a different scale commonly used in the United States. Understanding the distinction between these temperature scales is essential in various scientific fields, particularly in thermodynamics, physics, and engineering, where precise temperature measurements are crucial for accurate calculations and experiments.
See lessWhich of the following is not a unit of heat?
Among the options provided; option [D] Degree Celsius is not a unit of heat. Instead, it is a unit of temperature measurement on the Celsius scale. Calorie (option [A]), Kilocalorie (option [B]), and Joule (option [C]) are all units used to quantify heat or energy. They represent different scales foRead more
Among the options provided; option [D] Degree Celsius is not a unit of heat. Instead, it is a unit of temperature measurement on the Celsius scale. Calorie (option [A]), Kilocalorie (option [B]), and Joule (option [C]) are all units used to quantify heat or energy. They represent different scales for measuring the amount of heat or energy transferred. Calorie and Kilocalorie are commonly used in the context of food and nutrition to measure the energy content of food, while Joule is the SI unit of energy and is commonly used in scientific and engineering applications to measure heat, work, and energy transfer. Understanding the distinction between temperature and heat is crucial in various fields, including thermodynamics, physics, and engineering.
See lessBolometer is an instrument which measures
The correct answer is option B: Thermal radiation. A bolometer is an instrument used to measure thermal radiation. It detects and quantifies the intensity of infrared or heat radiation emitted by objects. When exposed to thermal radiation, a bolometer undergoes a change in electrical resistance, whiRead more
The correct answer is option B: Thermal radiation. A bolometer is an instrument used to measure thermal radiation. It detects and quantifies the intensity of infrared or heat radiation emitted by objects. When exposed to thermal radiation, a bolometer undergoes a change in electrical resistance, which is then measured to determine the intensity of the radiation. This principle allows bolometers to be used in various applications, including astronomy for studying celestial objects emitting infrared radiation, in thermal imaging devices for detecting heat signatures, and in industrial processes for monitoring temperature and thermal properties. Unlike instruments that measure thermal conductivity, intensity of sound, or specific heat, a bolometer specifically targets thermal radiation, making it a valuable tool in fields where precise measurement of heat energy is necessary for research, monitoring, and analysis.
See less