How to parallelogram diagonals intersecting at point.
Questions on Parallelogram for 10th Class.
Class 10th Maths, Exercise 6.6, Questions No:6.
CBSE Board and UP board and Others state Board, Session 2022-2023.
Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
Share
In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA.
In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = …(1)
In ΔDEB. by pythagoras theorem, DE² + EB² = DB²
⇒ DE² + (EA + AB)² = DB²
⇒ (DE² + EA²) + AB² + 2EA × AB = DB²
⇒ DA² + AB² + 2EA × AB = DB² …(ii)
In ΔADF, by Pythagoras theorem, AD² = AF² + FD²
In ΔAFC, by pythagoras theorem
AC² = AF² + FC² = AF² + (DC – FD)² = AF² + DC² + FD² – 2DC × FD
= (AF² + FD²) + DC² – 2DC × FD
⇒ AC² = AD² + DC² – 2DC × FD …(iii)
ABCD is a parallelogram.
Therefore
AB = CD …(iv)
and, BC = AD …(v)
In ΔDEA and ΔADF,
∠DEA = ∠AFD [Each 90]
∠EAD = ∠ADF [EA II DF]
AD = AD [Common]
∴ΔEAD ≅ ΔFDA [AAS congruency rule]
⇒ EA = DF …(vi)
Adding equations (ii) and (iii), we have
DA² + AB² + 2EA AB + AD² + DC² – 2DC FD = DB² + AC²
⇒ DA² + AB² + AD² + DC² + 2EA × AB – 2DC × FD = DB² + AC²
⇒ BC² + AB² + AD² + DC² + 2EA × AB – 2AB × EA = DB² + AC² [From the equation (iv) and (vi)]
⇒ AB² + BC² + CD² + DA² = AC² + BD²