jai kohli
  • 2

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

  • 2

How to parallelogram diagonals intersecting at point.
Questions on Parallelogram for 10th Class.
Class 10th Maths, Exercise 6.6, Questions No:6.
CBSE Board and UP board and Others state Board, Session 2022-2023.

Share

1 Answer

  1. In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA.
    In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = …(1)
    In ΔDEB. by pythagoras theorem, DE² + EB² = DB²
    ⇒ DE² + (EA + AB)² = DB²
    ⇒ (DE² + EA²) + AB² + 2EA × AB = DB²
    ⇒ DA² + AB² + 2EA × AB = DB² …(ii)
    In ΔADF, by Pythagoras theorem, AD² = AF² + FD²
    In ΔAFC, by pythagoras theorem
    AC² = AF² + FC² = AF² + (DC – FD)² = AF² + DC² + FD² – 2DC × FD
    = (AF² + FD²) + DC² – 2DC × FD
    ⇒ AC² = AD² + DC² – 2DC × FD …(iii)
    ABCD is a parallelogram.
    Therefore
    AB = CD …(iv)
    and, BC = AD …(v)
    In ΔDEA and ΔADF,
    ∠DEA = ∠AFD [Each 90]
    ∠EAD = ∠ADF [EA II DF]
    AD = AD [Common]
    ∴ΔEAD ≅ ΔFDA [AAS congruency rule]
    ⇒ EA = DF …(vi)
    Adding equations (ii) and (iii), we have
    DA² + AB² + 2EA AB + AD² + DC² – 2DC FD = DB² + AC²
    ⇒ DA² + AB² + AD² + DC² + 2EA × AB – 2DC × FD = DB² + AC²
    ⇒ BC² + AB² + AD² + DC² + 2EA × AB – 2AB × EA = DB² + AC² [From the equation (iv) and (vi)]
    ⇒ AB² + BC² + CD² + DA² = AC² + BD²

    • 3
Leave an answer

Leave an answer

Browse