An astronaut can jump higher on the lunar surface than on the Earth’s surface because the force of gravity on the lunar surface is very less as compared to the Earth’s surface. This weaker gravity allows the astronaut to exert more force when jumping.
Share
An astronaut can jump higher on the lunar surface than on the Earth’s surface because the force of gravity on the lunar surface is much less compared to the Earth’s surface (C). This weaker gravity allows the astronaut to exert less downward force on the lunar surface, enabling them to achieve greater height in their jump. While the astronaut is not weightless on the Moon (A), there is less gravitational pull due to the Moon’s smaller mass (D), but this difference primarily accounts for the discrepancy in weight, not the ability to jump higher. The absence of atmosphere on the Moon (B) does not significantly affect the astronaut’s ability to jump higher, as it primarily influences air resistance rather than gravitational force. Thus, the correct option is (C) The force of gravity on the lunar surface is very less as compared to the Earth’s surface.