In tall trees, water rises with the help of the transpirational pull generated by transpiration or loss of water from the stomatal pores of leaves. This is called the cohesion-tension model of water transport. During daytime, the water lost through transpiration (by the leaves to the surroundings) cRead more
In tall trees, water rises with the help of the transpirational pull generated by transpiration or loss of water from the stomatal pores of leaves. This is called the cohesion-tension model of water transport. During daytime, the water lost through transpiration (by the leaves to the surroundings) causes the guard cells and other epidermal cells to become flaccid. They in turn take water from the xylem. This creates a negative pressure or tension in the xylem vessels, from the surfaces of the leaves to the tips of the roots, through the stem. As a result, the water present in the xylem is pulled as a single column from the stem. The cohesion and adhesion forces of the water molecules and the cell walls of the xylem vessels prevent the water column from splitting.
In plants, transpiration is driven by several environmental and physiological factors. The external factors affecting transpiration are wind, speed, light, humidity, and temperature. The plant factors affecting transpiration are canopy structure, number and distribution of stomata, water status of plants, and number of open stomata. Although transpiration causes water loss, the transpirational pull helps water rise in the stems of plants. This helps in the absorption and transport of minerals from the soil to the various plant parts. Transpiration has a cooling effect on plants. It helps maintain plant shape and structure by keeping the cells turgid. Transpiration also provides water for photosynthesis.
Root pressure is the positive pressure that develops in the roots of plants by the active absorption of nutrients from the soil. When the nutrients are actively absorbed by root hairs, water (along with minerals) increases the pressure in the xylem. This pressure pushes the water up to small heightsRead more
Root pressure is the positive pressure that develops in the roots of plants by the active absorption of nutrients from the soil. When the nutrients are actively absorbed by root hairs, water (along with minerals) increases the pressure in the xylem. This pressure pushes the water up to small heights. Root pressure can be observed experimentally by cutting the stem of a well-watered plant on a humid day. When the stem is cut, the solution oozes from the cut end.
Root pressure is also linked to the phenomenon of guttation, i.e., the loss of water in the form of liquid droplets from the vein endings of certain herbaceous plants.
Root pressure is only able to transport water up to small heights. However, it helps in re-establishing the continuous chains of water molecules in the xylem.
Transpirational pull maintains the flow of water molecules from the roots to the shoots.
Mycorrhiza is a symbiotic association of fungi with the root systems of some plants. The fungal hyphae either form a dense network around the young roots or they penetrate the cells of the roots. The large surface area of the fungal hyphae is helpful in increasing the absorption of water and mineralRead more
Mycorrhiza is a symbiotic association of fungi with the root systems of some plants. The fungal hyphae either form a dense network around the young roots or they penetrate the cells of the roots. The large surface area of the fungal hyphae is helpful in increasing the absorption of water and minerals from the soil. In return, they get sugar and nitrogenous compounds from the host plants. The mycorrhizal association is obligate in some plants. For example, Pinus seeds do not germinate and establish in the absence of mycorrhizal.
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. For example: when water diffuses into a plant cell, it causes pressure to build up against the cell wall. This makes the cell wall turgid. This pressure is termed as pressuRead more
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. For example: when water diffuses into a plant cell, it causes pressure to build up against the cell wall. This makes the cell wall turgid. This pressure is termed as pressure potential and has a positive value.
Water potential quantifies the tendency of water to move from one part to the other during various cellular processes such as diffusion, osmosis, etc. It is denoted by the Greek letter Psi or Ψ and is expressed in Pascals (Pₐ). The water potential of pure water is always taken as zero at standard teRead more
Water potential quantifies the tendency of water to move from one part to the other during various cellular processes such as diffusion, osmosis, etc. It is denoted by the Greek letter Psi or Ψ and is expressed in Pascals
(Pₐ). The water potential of pure water is always taken as zero at standard temperature and pressure.
Water potential (ΨW) is expressed as the sum of solute potential (Ψₛ) and pressure potential (ΨP).
ΨW = Ψₛ + ΨP
When some solute is dissolved in water, the water potential of pure water decreases. This is termed as solute potential (Ψs), which is always negative. For a solution at atmospheric pressure, ΨW = Ψₛ.
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. It is termed as pressure potential. It is denoted by Ψp and has a positive value, although a negative pressure potential is present in the xylem. This pressure potential plays a major role in the ascent of water through the stem.
Describe transpiration pull model of water transport in plants. What are the factors influencing transpiration? How is it useful to plants?
In tall trees, water rises with the help of the transpirational pull generated by transpiration or loss of water from the stomatal pores of leaves. This is called the cohesion-tension model of water transport. During daytime, the water lost through transpiration (by the leaves to the surroundings) cRead more
In tall trees, water rises with the help of the transpirational pull generated by transpiration or loss of water from the stomatal pores of leaves. This is called the cohesion-tension model of water transport. During daytime, the water lost through transpiration (by the leaves to the surroundings) causes the guard cells and other epidermal cells to become flaccid. They in turn take water from the xylem. This creates a negative pressure or tension in the xylem vessels, from the surfaces of the leaves to the tips of the roots, through the stem. As a result, the water present in the xylem is pulled as a single column from the stem. The cohesion and adhesion forces of the water molecules and the cell walls of the xylem vessels prevent the water column from splitting.
In plants, transpiration is driven by several environmental and physiological factors. The external factors affecting transpiration are wind, speed, light, humidity, and temperature. The plant factors affecting transpiration are canopy structure, number and distribution of stomata, water status of plants, and number of open stomata. Although transpiration causes water loss, the transpirational pull helps water rise in the stems of plants. This helps in the absorption and transport of minerals from the soil to the various plant parts. Transpiration has a cooling effect on plants. It helps maintain plant shape and structure by keeping the cells turgid. Transpiration also provides water for photosynthesis.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/
What role does root pressure play in water movement in plants?
Root pressure is the positive pressure that develops in the roots of plants by the active absorption of nutrients from the soil. When the nutrients are actively absorbed by root hairs, water (along with minerals) increases the pressure in the xylem. This pressure pushes the water up to small heightsRead more
Root pressure is the positive pressure that develops in the roots of plants by the active absorption of nutrients from the soil. When the nutrients are actively absorbed by root hairs, water (along with minerals) increases the pressure in the xylem. This pressure pushes the water up to small heights. Root pressure can be observed experimentally by cutting the stem of a well-watered plant on a humid day. When the stem is cut, the solution oozes from the cut end.
Root pressure is also linked to the phenomenon of guttation, i.e., the loss of water in the form of liquid droplets from the vein endings of certain herbaceous plants.
Root pressure is only able to transport water up to small heights. However, it helps in re-establishing the continuous chains of water molecules in the xylem.
Transpirational pull maintains the flow of water molecules from the roots to the shoots.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/
How is the mycorrhizal association helpful in absorption of water and minerals in plants?
Mycorrhiza is a symbiotic association of fungi with the root systems of some plants. The fungal hyphae either form a dense network around the young roots or they penetrate the cells of the roots. The large surface area of the fungal hyphae is helpful in increasing the absorption of water and mineralRead more
Mycorrhiza is a symbiotic association of fungi with the root systems of some plants. The fungal hyphae either form a dense network around the young roots or they penetrate the cells of the roots. The large surface area of the fungal hyphae is helpful in increasing the absorption of water and minerals from the soil. In return, they get sugar and nitrogenous compounds from the host plants. The mycorrhizal association is obligate in some plants. For example, Pinus seeds do not germinate and establish in the absence of mycorrhizal.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/
What happens when a pressure greater than the atmospheric pressure is applied to pure water or a solution?
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. For example: when water diffuses into a plant cell, it causes pressure to build up against the cell wall. This makes the cell wall turgid. This pressure is termed as pressuRead more
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. For example: when water diffuses into a plant cell, it causes pressure to build up against the cell wall. This makes the cell wall turgid. This pressure is termed as pressure potential and has a positive value.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/
Briefly describe water potential. What are the factors affecting it?
Water potential quantifies the tendency of water to move from one part to the other during various cellular processes such as diffusion, osmosis, etc. It is denoted by the Greek letter Psi or Ψ and is expressed in Pascals (Pₐ). The water potential of pure water is always taken as zero at standard teRead more
Water potential quantifies the tendency of water to move from one part to the other during various cellular processes such as diffusion, osmosis, etc. It is denoted by the Greek letter Psi or Ψ and is expressed in Pascals
(Pₐ). The water potential of pure water is always taken as zero at standard temperature and pressure.
Water potential (ΨW) is expressed as the sum of solute potential (Ψₛ) and pressure potential (ΨP).
ΨW = Ψₛ + ΨP
When some solute is dissolved in water, the water potential of pure water decreases. This is termed as solute potential (Ψs), which is always negative. For a solution at atmospheric pressure, ΨW = Ψₛ.
The water potential of pure water or a solution increases on the application of pressure values more than atmospheric pressure. It is termed as pressure potential. It is denoted by Ψp and has a positive value, although a negative pressure potential is present in the xylem. This pressure potential plays a major role in the ascent of water through the stem.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/