It can be observed that the difference between two consecutive upper class limits is 2. The class marks with their respective frequencies are obtained as below. Weight (in kg) Less than38 38-40 40-42 42-44 44 46 46-48 48-50 50-52 Total(n) Frequency (f) 0 3-0=3 5-3=2 9-5=4 14-9=5 28-14=14 32-28=4 35-Read more
It can be observed that the difference between two consecutive upper class limits is 2. The class marks with their respective frequencies are obtained as below.
Weight (in kg) Less than38 38-40 40-42 42-44 44 46 46-48 48-50 50-52 Total(n)
Frequency (f) 0 3-0=3 5-3=2 9-5=4 14-9=5 28-14=14 32-28=4 35-32=3 35
Cumulative
frequency 0 3 5 9 14 28 32 35
The cumulative frequency just greater than n/2 (i.e. 35/2 = 17.5) is 28, belonging to class intervals 46- 48.
Median class = 46 – 48
lower class limit (l) of median class = 46
Cumulative frequency (cf) of class preceding median class = 14
Class size (h) = 2
Median = l + ((n/2 – cf)/f) × h = 46 + ((17.5 – 14)/14) × 2 = 46 + 0.5 = 46.5
Therefore, median of this data is 46.5.
Hence, the value of median is verified.
There are a total of 5 days. Shyam can go to the shop in 5 ways and Ekta can go to the shop in 5 ways. Therefore, total number of outcomes = 5 × 5 = 25 (i) They can reach on the same day in 5 ways. ie, (t, t), (w, w), (th, th), (f, f),(s, s) P(both will reach on same day) = 5/25 = 1/5 (ii) They canRead more
There are a total of 5 days. Shyam can go to the shop in 5 ways and Ekta can go to the shop in 5 ways.
Therefore, total number of outcomes = 5 × 5 = 25
(i) They can reach on the same day in 5 ways.
ie, (t, t), (w, w), (th, th), (f, f),(s, s)
P(both will reach on same day) = 5/25 = 1/5
(ii) They can reach on consecutive days in these 8 ways- (t, w), (w, th), (th, f), (f, s), (w,t), (th, w), (f, th), (s, f).
Therefore, P (both will reach on consecutive days) = 8/25
P (both will reach on same day) = 1/5(From (i)]
P (both will reach on different days) = 1 – 1/5 = 4/5
(i) (cosec θ - cot θ)² = (1 - cos θ)(1 + cos θ) LHS = (cosec θ - cot θ)² = (1/sin θ - cos θ/sin θ) = ((1 - cos θ)/sin θ)² = ((1 - cos θ)²)/(sin² θ) = ((1 - cos θ)²)(1 - cos² θ) [∵ sin² θ = 1 - cos² θ] = ((1 - cos θ)(1 - cos θ))/((1 - cos θ)(1 + cos θ)) = (1 - cos θ)/(1 + cos θ) = RHS (ii) (cos A)/(1Read more
(i) (cosec θ – cot θ)² = (1 – cos θ)(1 + cos θ)
LHS = (cosec θ – cot θ)²
= (1/sin θ – cos θ/sin θ)
= ((1 – cos θ)/sin θ)²
= ((1 – cos θ)²)/(sin² θ)
= ((1 – cos θ)²)(1 – cos² θ) [∵ sin² θ = 1 – cos² θ]
= ((1 – cos θ)(1 – cos θ))/((1 – cos θ)(1 + cos θ))
= (1 – cos θ)/(1 + cos θ) = RHS
(ii) (cos A)/(1 + sin A) + (1 + sin A)/(cos A) = 2 sec A
LHS = (cos A)(1 + sin A) + (1 + sin A)/(cos A)
= (cos² A) + (1 + sin A)²/((1 + sin A)cos A)
= (cos² A + 1 + sin² A + 2 sin A)/((1 + sin A)cos A)
= (1 + 1 + 2 sin A)/((1 + sin A)cos A)) [∵ sin² A + cos² A = 1]
= (2 + 2 sin A)/((1 + sin A)cos A)
= (2(1 + sin A))((1 + sin A)cos A) = 2/cos A = 2 sec A = RHS
(iii) tan θ /(1 – cot θ) + cot θ /(1 – tan θ) = 1 + sec θ cosec θ
LHS = tan θ /(1 – cot θ) + cot θ /(1 – tan θ)
= [(sin θ /cos θ)/(1 – (cos θ /sin θ))] + [(cos θ /sin θ)/(1 – sin cos θ /sin θ /coscos θ /sin θ)] [∵ tan θ = sin θ /cos θ, cot θ = cos θ /sin θ]
= [(sin θ /cos θ)/((sin θ – cos θ)/sin θ)]+[(cos θ /sin θ)/((cos θ – sin θ)/cos θ)]
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(cos θ – sin θ))
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(sin θ – cos θ)) [∵ (cos θ – sin θ) = -(sin θ – cos θ)]
= (sin³ θ – cos³ θ)/(cos θ sin θ (sin θ – cos θ))
= ((sin θ – cos θ)(sin² θ + cos² θ + cos θ sin θ))/(cos θ sin θ (sin θ – cos θ)) [∵ a³ – b³ = (a – b)(a² + b² + ab)]
= (1 + cos θ sin θ)(cos θ sin θ)
= (1/cos θ sin θ) + (cos θ sin θ /cos θ sin θ)
= sec θ cosec θ + 1 = RHS
(iv) (1 + sec A)/(sec A) = (sin² A)/1 – cos A)
LHS = (1 + sec A)(sec A)
= (1 + 1/cos A)/(1/cos A) [∵ sec A = 1/cos A]
= ((cos A + 1)/cos A)/(1/cos A)
= (1 + cos A)/1
= (1 + cos A)/1 × (1 – cos A)/(1 – cos A)
= (1 – cos² A)/(1 – cos A)
= (sin² A)/(1 – cos A) [∵ 1 – cos² A = sin² A]
= RHS
(v) (cos A – sin A + 1)/(cos A + sin A -1) = cosec A + cot A
LHS = (cos A – sin A + 1)/(cos A + sin A – 1)
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A) [Dividing Numerator and Denominator by sin A]
= (cot A + cosec A – (1))/(cot A + 1 – cosec A)]
= (cot A + cosec A – (cosec A + cot A)(cosec A – cot A))/(cot A + 1 – cosec A) [∵ cosec² A – cot² A = 1]
= (cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)/(cot A + 1 – cosec A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A = RHS
(vi) √((1 + sin A)/(1 – sin A)) = sec A + tan A
LHS = √((1 + sin A)/(1 – sin A))
= √((1 + sin A)/(1 – sin A) × (1 + sin A)/(1 + sin A)) = √((1 + sin A)²/(1 – sin A))
= √((1 + sin A)²/(cos² A)) [∵ 1 – sin² A = cos² A]
= (1 + sin A)/(cos A)
= (1/cos A) + (sin A/cos A)
= sec A + tan A = RHS
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
LHS = (sin A + cosec A)² + (cos A + sec A)²
= sin² A + cosec² A + 2 sin A cosec A + cos² A + sec² A + 2 cos A sec A
= (sin² A + cos² A) + cosec² A + 2 + sec² A + 2 [∵ cos A sec A = 1, sin A cosec A = 1]
= 1 + (1 + cot² A) + 2 + (1 + tan² A) + 2 [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= 7 + tan² A + cot² A = RHS
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
LHS = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin² A)/sin A)((1 – cos² A)/cos A)
= (cos² A / sin A)(sin ² A / cos A)
= sin A cos A …(i)
= RHS = 1/(tan A + cot A)
= (1/((sin A / sin A) + (cos A / sin A)) = (1/((sin² A + cos² A)/(cos A sin A))) = (1/(1/cos A sin A))
= cos A sin A …(ii)
From equation (i) and (ii), we get
LHS = RHS
(x) (1 + tan² A)/(1 + cot² A)
= sec² A / cosec² A [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= (1/cos² A)/(1/sin² A) = 1/(cos² A) × (sin² A)/1 = tan² A = RHS
Now, ((1 – tan A)/(1 – cot A))²
= ((1 – ((sin A)/(cos A)))/(1 – ((cos A)/(sin A))) = (((cos A – sin A)/(cos A))/((sin A – cos A)/(sin A)))²
= ((cos A – sin A)/(cos A) × (sin A)/(sin A – cos A))² = (- (sin A – cos A)/(cos A) × (sin A)/(sin A – cos A))²
= (- sin A / cos A)² = tan² A = RHS
Given that: tan(A + B) = √3 ⇒ tan (A+B) = tan 60° [∵ tan 60° = √3] ⇒ A+B= 60° ...(i) Given that: tan (A - B) = 1/√3 ⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3] ⇒ A-B = 30° ...(ii) Solving the equations (i) and (ii), we get 2A = 90° ⇒ A = 45° From equation (1), we get 45°+B = 60° ⇒ B = 15° Hence, A = 45°Read more
Given that: tan(A + B) = √3
⇒ tan (A+B) = tan 60° [∵ tan 60° = √3]
⇒ A+B= 60° …(i)
Given that: tan (A – B) = 1/√3
⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3]
⇒ A-B = 30° …(ii)
Solving the equations (i) and (ii), we get
2A = 90° ⇒ A = 45°
From equation (1), we get
45°+B = 60° ⇒ B = 15°
Hence, A = 45° and B = 15°
See this video Solution for better understanding 🙌😀
Given that: cot 0 = 7/8 Let cot 0=where k is a real number. In △ABC, by Pythagoras theorem, we have AC² = BC²+AB² = (8k)²+(7k)² = 64k²+49k² = 113k² ⇒ AC = √(113k²) = √(113k) (i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ)) = ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113)) = (1-(8/√113)²)/(1-(7/√113)²)Read more
Given that: cot 0 = 7/8
Let cot 0=where k is a real number.
In △ABC, by Pythagoras theorem, we have
AC² = BC²+AB²
= (8k)²+(7k)²
= 64k²+49k²
= 113k²
⇒ AC = √(113k²) = √(113k)
(i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ))
= ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113))
= (1-(8/√113)²)/(1-(7/√113)²) = (1- 64/113)/(1- 49/113) = ((113-64)/113)/((113-49)/113) = 49/64
(ii) cot² θ = (cot θ)² = (7/8)² = 49/64
Here is the Video explanation of the above question😀👇
Given that: sec 0 = 13/12 Let sec 0 = 13k/12k, where k is a real number. In △ABC, by Pythagoras theorem, we have BC² = AC² - AB² = (13k)² - (12k)² = 169k² 144k² = 25k² ⇒ BC = √(25k²) = 5k Hence, sin 0 = BC/AC = 5k/13k = 5/13 cos 0 = AB/AC = 12k/13k = 12/13 tan 0 = BC/AB = 5k/12k = 5/12 cose 0 = AC/BRead more
Given that: sec 0 = 13/12
Let sec 0 = 13k/12k, where k is a real number.
In △ABC, by Pythagoras theorem, we have
BC² = AC² – AB²
= (13k)² – (12k)²
= 169k² 144k²
= 25k²
⇒ BC = √(25k²) = 5k
Hence, sin 0 = BC/AC = 5k/13k = 5/13
cos 0 = AB/AC = 12k/13k = 12/13
tan 0 = BC/AB = 5k/12k = 5/12
cose 0 = AC/BC = 13k/5k = 13/5 and cot 0 = AB/BC = 12k/5k = 12/5
See the below video for better explanation of the above question👇😀
Given that: cos A= cos B cos A = cos B ⇒ AP/AQ = BC/BD ⇒ AP/BC = AQ/BD Let AP/BC = AQ/BC = k ...(i) Therefore, AP = k(BC) and AQ = k(BD) Now, In △APQ and △BCD PQ/CD = √((AQ²-AP²))/(√(BD²-BC²)) = (√((k.BD)²-(k.BC)²))/(√(BD²-BC²)) = (k√(BD²-BC²))/(√(BD²-BC²)) = k ...(ii) From the equation (i) and (ii)Read more
Given that: cos A= cos B
cos A = cos B
⇒ AP/AQ = BC/BD
⇒ AP/BC = AQ/BD
Let AP/BC = AQ/BC = k …(i)
Therefore, AP = k(BC) and AQ = k(BD)
Now, In △APQ and △BCD
PQ/CD = √((AQ²-AP²))/(√(BD²-BC²))
= (√((k.BD)²-(k.BC)²))/(√(BD²-BC²))
= (k√(BD²-BC²))/(√(BD²-BC²)) = k …(ii)
From the equation (i) and (ii), we get
AP/BC = AQ/BD = PQ/CD
So, △APQ ∼ △BCD [SSS similarity criteria]
Hence, ∠A = ∠B
(i) The median through A meet BC at D. So, D is the mid-point of BC. Therefore Coordinates of D = ((6+1)/2, (5+4)/2) = (7/2, 9/2) (ii) Point P lies on AD, such that AP:PD = 2:1. Therefore (1.4) Coordinates of P = ((2×7/2+1×4)/(2+1), (2×9/2+1×2)/(2+1)) (iii) The median through B meets AC at E. So, ERead more
(i) The median through A meet BC at D. So, D is the mid-point of BC. Therefore Coordinates of D = ((6+1)/2, (5+4)/2) = (7/2, 9/2)
(ii) Point P lies on AD, such that AP:PD = 2:1. Therefore (1.4) Coordinates of P = ((2×7/2+1×4)/(2+1), (2×9/2+1×2)/(2+1))
(iii) The median through B meets AC at E. So, E is the mid-point of AC. Therefore, Coordinates of E = ((4+1)/2, (2+4)/2) = (5/2, 3)
(iv) Point Q lies on AE, such that AQ:QE = 2:1.Therefore Coordinates of Q = ((2×5/2+1×6)/(2+1), (2×3+1×5)/(2+1)) = (11/3, 11/3)
The median through C mects AB at F. So, F is the mid-point of AB. Therefore Coordinates of F = ((4+6)/2, (2+5)/2) = (5, 7/2)
Point R lies on CF, such that CR:RF = 2:1.
(v) Therefore, the coordinates of R = ((2×5+1×1)/(2+1), (2×7/2+1×4)/(2+1)) = (11/3, 11/3)
(vi) The coordinates of P, Q and R is same.
(vii)Points A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) are the vertices of triangle ABC. Median through A meets BC at D. So, D is the mid-point of BC. Therefore, The coordinates of D = ((x₂+x₃)/2, (y₂+y₃)/2)
Let O be the centroid of the triangle. Point O lies on AD such that A0:0D = 2:1.
Therefore, the coordinates of point O
((2×(x₂+x₃)/2 +1×x₁)/(2+1), (2×(y₂+y₃)/2 +1×y₁)/(2+1)) = ((x₁+x₂+x₃)/2, (y₁+y₂+y₃)/2)
Here you can see the video explanation of this question ✋
Write the following in decimal form and say what kind of decimal expansion each has :3/13
(iv) 3/13 = 0. 230769230769230769…, Recurring & Non-terminating
(iv) 3/13 = 0. 230769230769230769…, Recurring & Non-terminating
See lessWrite the following in decimal form and say what kind of decimal expansion each has : 329/400.
(vi) 329/400 = 0.8225, Terminating
(vi) 329/400 = 0.8225, Terminating
See lessDuring the medical check-up of 35 students of a class, their weights were recorded as follows:
It can be observed that the difference between two consecutive upper class limits is 2. The class marks with their respective frequencies are obtained as below. Weight (in kg) Less than38 38-40 40-42 42-44 44 46 46-48 48-50 50-52 Total(n) Frequency (f) 0 3-0=3 5-3=2 9-5=4 14-9=5 28-14=14 32-28=4 35-Read more
It can be observed that the difference between two consecutive upper class limits is 2. The class marks with their respective frequencies are obtained as below.
Weight (in kg) Less than38 38-40 40-42 42-44 44 46 46-48 48-50 50-52 Total(n)
Frequency (f) 0 3-0=3 5-3=2 9-5=4 14-9=5 28-14=14 32-28=4 35-32=3 35
Cumulative
frequency 0 3 5 9 14 28 32 35
The cumulative frequency just greater than n/2 (i.e. 35/2 = 17.5) is 28, belonging to class intervals 46- 48.
See lessMedian class = 46 – 48
lower class limit (l) of median class = 46
Cumulative frequency (cf) of class preceding median class = 14
Class size (h) = 2
Median = l + ((n/2 – cf)/f) × h = 46 + ((17.5 – 14)/14) × 2 = 46 + 0.5 = 46.5
Therefore, median of this data is 46.5.
Hence, the value of median is verified.
Two customers Shyam and Ekta are visiting a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any day as on another day. What is the probability that both will visit the shop on (i) the same day? (ii) consecutive days? (iii) different days?
There are a total of 5 days. Shyam can go to the shop in 5 ways and Ekta can go to the shop in 5 ways. Therefore, total number of outcomes = 5 × 5 = 25 (i) They can reach on the same day in 5 ways. ie, (t, t), (w, w), (th, th), (f, f),(s, s) P(both will reach on same day) = 5/25 = 1/5 (ii) They canRead more
There are a total of 5 days. Shyam can go to the shop in 5 ways and Ekta can go to the shop in 5 ways.
See lessTherefore, total number of outcomes = 5 × 5 = 25
(i) They can reach on the same day in 5 ways.
ie, (t, t), (w, w), (th, th), (f, f),(s, s)
P(both will reach on same day) = 5/25 = 1/5
(ii) They can reach on consecutive days in these 8 ways- (t, w), (w, th), (th, f), (f, s), (w,t), (th, w), (f, th), (s, f).
Therefore, P (both will reach on consecutive days) = 8/25
P (both will reach on same day) = 1/5(From (i)]
P (both will reach on different days) = 1 – 1/5 = 4/5
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosec θ - cot θ)² = (1 - cos θ)(1 + cos θ) LHS = (cosec θ - cot θ)² = (1/sin θ - cos θ/sin θ) = ((1 - cos θ)/sin θ)² = ((1 - cos θ)²)/(sin² θ) = ((1 - cos θ)²)(1 - cos² θ) [∵ sin² θ = 1 - cos² θ] = ((1 - cos θ)(1 - cos θ))/((1 - cos θ)(1 + cos θ)) = (1 - cos θ)/(1 + cos θ) = RHS (ii) (cos A)/(1Read more
(i) (cosec θ – cot θ)² = (1 – cos θ)(1 + cos θ)
LHS = (cosec θ – cot θ)²
= (1/sin θ – cos θ/sin θ)
= ((1 – cos θ)/sin θ)²
= ((1 – cos θ)²)/(sin² θ)
= ((1 – cos θ)²)(1 – cos² θ) [∵ sin² θ = 1 – cos² θ]
= ((1 – cos θ)(1 – cos θ))/((1 – cos θ)(1 + cos θ))
= (1 – cos θ)/(1 + cos θ) = RHS
(ii) (cos A)/(1 + sin A) + (1 + sin A)/(cos A) = 2 sec A
LHS = (cos A)(1 + sin A) + (1 + sin A)/(cos A)
= (cos² A) + (1 + sin A)²/((1 + sin A)cos A)
= (cos² A + 1 + sin² A + 2 sin A)/((1 + sin A)cos A)
= (1 + 1 + 2 sin A)/((1 + sin A)cos A)) [∵ sin² A + cos² A = 1]
= (2 + 2 sin A)/((1 + sin A)cos A)
= (2(1 + sin A))((1 + sin A)cos A) = 2/cos A = 2 sec A = RHS
(iii) tan θ /(1 – cot θ) + cot θ /(1 – tan θ) = 1 + sec θ cosec θ
LHS = tan θ /(1 – cot θ) + cot θ /(1 – tan θ)
= [(sin θ /cos θ)/(1 – (cos θ /sin θ))] + [(cos θ /sin θ)/(1 – sin cos θ /sin θ /coscos θ /sin θ)] [∵ tan θ = sin θ /cos θ, cot θ = cos θ /sin θ]
= [(sin θ /cos θ)/((sin θ – cos θ)/sin θ)]+[(cos θ /sin θ)/((cos θ – sin θ)/cos θ)]
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(cos θ – sin θ))
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(sin θ – cos θ)) [∵ (cos θ – sin θ) = -(sin θ – cos θ)]
= (sin³ θ – cos³ θ)/(cos θ sin θ (sin θ – cos θ))
= ((sin θ – cos θ)(sin² θ + cos² θ + cos θ sin θ))/(cos θ sin θ (sin θ – cos θ)) [∵ a³ – b³ = (a – b)(a² + b² + ab)]
= (1 + cos θ sin θ)(cos θ sin θ)
= (1/cos θ sin θ) + (cos θ sin θ /cos θ sin θ)
= sec θ cosec θ + 1 = RHS
(iv) (1 + sec A)/(sec A) = (sin² A)/1 – cos A)
LHS = (1 + sec A)(sec A)
= (1 + 1/cos A)/(1/cos A) [∵ sec A = 1/cos A]
= ((cos A + 1)/cos A)/(1/cos A)
= (1 + cos A)/1
= (1 + cos A)/1 × (1 – cos A)/(1 – cos A)
= (1 – cos² A)/(1 – cos A)
= (sin² A)/(1 – cos A) [∵ 1 – cos² A = sin² A]
= RHS
(v) (cos A – sin A + 1)/(cos A + sin A -1) = cosec A + cot A
LHS = (cos A – sin A + 1)/(cos A + sin A – 1)
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A) [Dividing Numerator and Denominator by sin A]
= (cot A + cosec A – (1))/(cot A + 1 – cosec A)]
= (cot A + cosec A – (cosec A + cot A)(cosec A – cot A))/(cot A + 1 – cosec A) [∵ cosec² A – cot² A = 1]
= (cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)/(cot A + 1 – cosec A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A = RHS
(vi) √((1 + sin A)/(1 – sin A)) = sec A + tan A
LHS = √((1 + sin A)/(1 – sin A))
= √((1 + sin A)/(1 – sin A) × (1 + sin A)/(1 + sin A)) = √((1 + sin A)²/(1 – sin A))
= √((1 + sin A)²/(cos² A)) [∵ 1 – sin² A = cos² A]
= (1 + sin A)/(cos A)
= (1/cos A) + (sin A/cos A)
= sec A + tan A = RHS
(vii) (sin θ – 2 sin³ θ)/(2 cos³ θ – cos θ) = tan θ
LHS = (sin θ – 2 sin³ θ)/(2 cos³ θ – cos θ)
= (sin θ(1 – 2 sin² θ))/(cos θ (2 cos² θ – 1))
= (sin θ(1 – 2 sin² θ))/(cos θ [2(1 – sin² θ) – 1]) [∵ cos²θ = 1 – sin²θ]
= (sin θ(1 – 2 sin² θ))/(cos θ (2 – 2 cos² θ – 1))
= (sin θ(1 – 2 sin² θ))/(cos θ (1 – 2 sin² θ))
= sin θ /cos θ = tan θ = RHS
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
LHS = (sin A + cosec A)² + (cos A + sec A)²
= sin² A + cosec² A + 2 sin A cosec A + cos² A + sec² A + 2 cos A sec A
= (sin² A + cos² A) + cosec² A + 2 + sec² A + 2 [∵ cos A sec A = 1, sin A cosec A = 1]
= 1 + (1 + cot² A) + 2 + (1 + tan² A) + 2 [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= 7 + tan² A + cot² A = RHS
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
LHS = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin² A)/sin A)((1 – cos² A)/cos A)
= (cos² A / sin A)(sin ² A / cos A)
= sin A cos A …(i)
= RHS = 1/(tan A + cot A)
= (1/((sin A / sin A) + (cos A / sin A)) = (1/((sin² A + cos² A)/(cos A sin A))) = (1/(1/cos A sin A))
= cos A sin A …(ii)
From equation (i) and (ii), we get
LHS = RHS
(x) (1 + tan² A)/(1 + cot² A)
= sec² A / cosec² A [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= (1/cos² A)/(1/sin² A) = 1/(cos² A) × (sin² A)/1 = tan² A = RHS
Now, ((1 – tan A)/(1 – cot A))²
= ((1 – ((sin A)/(cos A)))/(1 – ((cos A)/(sin A))) = (((cos A – sin A)/(cos A))/((sin A – cos A)/(sin A)))²
= ((cos A – sin A)/(cos A) × (sin A)/(sin A – cos A))² = (- (sin A – cos A)/(cos A) × (sin A)/(sin A – cos A))²
= (- sin A / cos A)² = tan² A = RHS
Here is the video solution 😄👇
See lessIf tan (A + B) = √3 and tan (A – B) = 1/√3 ; 0° B, find A and B.
Given that: tan(A + B) = √3 ⇒ tan (A+B) = tan 60° [∵ tan 60° = √3] ⇒ A+B= 60° ...(i) Given that: tan (A - B) = 1/√3 ⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3] ⇒ A-B = 30° ...(ii) Solving the equations (i) and (ii), we get 2A = 90° ⇒ A = 45° From equation (1), we get 45°+B = 60° ⇒ B = 15° Hence, A = 45°Read more
Given that: tan(A + B) = √3
⇒ tan (A+B) = tan 60° [∵ tan 60° = √3]
⇒ A+B= 60° …(i)
Given that: tan (A – B) = 1/√3
⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3]
⇒ A-B = 30° …(ii)
Solving the equations (i) and (ii), we get
2A = 90° ⇒ A = 45°
From equation (1), we get
45°+B = 60° ⇒ B = 15°
Hence, A = 45° and B = 15°
See this video Solution for better understanding 🙌😀
See lessIf cot θ = 7/8, evaluate: (i) (1-sin) (1+sinθ) / (1-cosθ) (1+cosθ) (ii) cot²θ
Given that: cot 0 = 7/8 Let cot 0=where k is a real number. In △ABC, by Pythagoras theorem, we have AC² = BC²+AB² = (8k)²+(7k)² = 64k²+49k² = 113k² ⇒ AC = √(113k²) = √(113k) (i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ)) = ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113)) = (1-(8/√113)²)/(1-(7/√113)²)Read more
Given that: cot 0 = 7/8
Let cot 0=where k is a real number.
In △ABC, by Pythagoras theorem, we have
AC² = BC²+AB²
= (8k)²+(7k)²
= 64k²+49k²
= 113k²
⇒ AC = √(113k²) = √(113k)
(i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ))
= ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113))
= (1-(8/√113)²)/(1-(7/√113)²) = (1- 64/113)/(1- 49/113) = ((113-64)/113)/((113-49)/113) = 49/64
(ii) cot² θ = (cot θ)² = (7/8)² = 49/64
Here is the Video explanation of the above question😀👇
See lessGiven sec θ = 13/12, Calculate all other trigonometric ratios.
Given that: sec 0 = 13/12 Let sec 0 = 13k/12k, where k is a real number. In △ABC, by Pythagoras theorem, we have BC² = AC² - AB² = (13k)² - (12k)² = 169k² 144k² = 25k² ⇒ BC = √(25k²) = 5k Hence, sin 0 = BC/AC = 5k/13k = 5/13 cos 0 = AB/AC = 12k/13k = 12/13 tan 0 = BC/AB = 5k/12k = 5/12 cose 0 = AC/BRead more
Given that: sec 0 = 13/12
Let sec 0 = 13k/12k, where k is a real number.
In △ABC, by Pythagoras theorem, we have
BC² = AC² – AB²
= (13k)² – (12k)²
= 169k² 144k²
= 25k²
⇒ BC = √(25k²) = 5k
Hence, sin 0 = BC/AC = 5k/13k = 5/13
cos 0 = AB/AC = 12k/13k = 12/13
tan 0 = BC/AB = 5k/12k = 5/12
cose 0 = AC/BC = 13k/5k = 13/5 and cot 0 = AB/BC = 12k/5k = 12/5
See the below video for better explanation of the above question👇😀
See lessIf angle A and angle B are acute angles such that cos A = cos B, then show that angle A = angle B.
Given that: cos A= cos B cos A = cos B ⇒ AP/AQ = BC/BD ⇒ AP/BC = AQ/BD Let AP/BC = AQ/BC = k ...(i) Therefore, AP = k(BC) and AQ = k(BD) Now, In △APQ and △BCD PQ/CD = √((AQ²-AP²))/(√(BD²-BC²)) = (√((k.BD)²-(k.BC)²))/(√(BD²-BC²)) = (k√(BD²-BC²))/(√(BD²-BC²)) = k ...(ii) From the equation (i) and (ii)Read more
Given that: cos A= cos B
cos A = cos B
⇒ AP/AQ = BC/BD
⇒ AP/BC = AQ/BD
Let AP/BC = AQ/BC = k …(i)
Therefore, AP = k(BC) and AQ = k(BD)
Now, In △APQ and △BCD
PQ/CD = √((AQ²-AP²))/(√(BD²-BC²))
= (√((k.BD)²-(k.BC)²))/(√(BD²-BC²))
= (k√(BD²-BC²))/(√(BD²-BC²)) = k …(ii)
From the equation (i) and (ii), we get
AP/BC = AQ/BD = PQ/CD
So, △APQ ∼ △BCD [SSS similarity criteria]
Hence, ∠A = ∠B
Video explanation of this question👌🤗
See lessLet A(4, 2), B(6, 5) and C(1, 4) be the vertices of triangle ABC.
(i) The median through A meet BC at D. So, D is the mid-point of BC. Therefore Coordinates of D = ((6+1)/2, (5+4)/2) = (7/2, 9/2) (ii) Point P lies on AD, such that AP:PD = 2:1. Therefore (1.4) Coordinates of P = ((2×7/2+1×4)/(2+1), (2×9/2+1×2)/(2+1)) (iii) The median through B meets AC at E. So, ERead more
(i) The median through A meet BC at D. So, D is the mid-point of BC. Therefore Coordinates of D = ((6+1)/2, (5+4)/2) = (7/2, 9/2)
(ii) Point P lies on AD, such that AP:PD = 2:1. Therefore (1.4) Coordinates of P = ((2×7/2+1×4)/(2+1), (2×9/2+1×2)/(2+1))
(iii) The median through B meets AC at E. So, E is the mid-point of AC. Therefore, Coordinates of E = ((4+1)/2, (2+4)/2) = (5/2, 3)
(iv) Point Q lies on AE, such that AQ:QE = 2:1.Therefore Coordinates of Q = ((2×5/2+1×6)/(2+1), (2×3+1×5)/(2+1)) = (11/3, 11/3)
The median through C mects AB at F. So, F is the mid-point of AB. Therefore Coordinates of F = ((4+6)/2, (2+5)/2) = (5, 7/2)
Point R lies on CF, such that CR:RF = 2:1.
(v) Therefore, the coordinates of R = ((2×5+1×1)/(2+1), (2×7/2+1×4)/(2+1)) = (11/3, 11/3)
(vi) The coordinates of P, Q and R is same.
(vii)Points A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) are the vertices of triangle ABC. Median through A meets BC at D. So, D is the mid-point of BC. Therefore, The coordinates of D = ((x₂+x₃)/2, (y₂+y₃)/2)
Let O be the centroid of the triangle. Point O lies on AD such that A0:0D = 2:1.
Therefore, the coordinates of point O
((2×(x₂+x₃)/2 +1×x₁)/(2+1), (2×(y₂+y₃)/2 +1×y₁)/(2+1)) = ((x₁+x₂+x₃)/2, (y₁+y₂+y₃)/2)
Here you can see the video explanation of this question ✋
See less