(i) (cosec θ - cot θ)² = (1 - cos θ)(1 + cos θ) LHS = (cosec θ - cot θ)² = (1/sin θ - cos θ/sin θ) = ((1 - cos θ)/sin θ)² = ((1 - cos θ)²)/(sin² θ) = ((1 - cos θ)²)(1 - cos² θ) [∵ sin² θ = 1 - cos² θ] = ((1 - cos θ)(1 - cos θ))/((1 - cos θ)(1 + cos θ)) = (1 - cos θ)/(1 + cos θ) = RHS (ii) (cos A)/(1Read more
(i) (cosec θ – cot θ)² = (1 – cos θ)(1 + cos θ)
LHS = (cosec θ – cot θ)²
= (1/sin θ – cos θ/sin θ)
= ((1 – cos θ)/sin θ)²
= ((1 – cos θ)²)/(sin² θ)
= ((1 – cos θ)²)(1 – cos² θ) [∵ sin² θ = 1 – cos² θ]
= ((1 – cos θ)(1 – cos θ))/((1 – cos θ)(1 + cos θ))
= (1 – cos θ)/(1 + cos θ) = RHS
(ii) (cos A)/(1 + sin A) + (1 + sin A)/(cos A) = 2 sec A
LHS = (cos A)(1 + sin A) + (1 + sin A)/(cos A)
= (cos² A) + (1 + sin A)²/((1 + sin A)cos A)
= (cos² A + 1 + sin² A + 2 sin A)/((1 + sin A)cos A)
= (1 + 1 + 2 sin A)/((1 + sin A)cos A)) [∵ sin² A + cos² A = 1]
= (2 + 2 sin A)/((1 + sin A)cos A)
= (2(1 + sin A))((1 + sin A)cos A) = 2/cos A = 2 sec A = RHS
(iii) tan θ /(1 – cot θ) + cot θ /(1 – tan θ) = 1 + sec θ cosec θ
LHS = tan θ /(1 – cot θ) + cot θ /(1 – tan θ)
= [(sin θ /cos θ)/(1 – (cos θ /sin θ))] + [(cos θ /sin θ)/(1 – sin cos θ /sin θ /coscos θ /sin θ)] [∵ tan θ = sin θ /cos θ, cot θ = cos θ /sin θ]
= [(sin θ /cos θ)/((sin θ – cos θ)/sin θ)]+[(cos θ /sin θ)/((cos θ – sin θ)/cos θ)]
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(cos θ – sin θ))
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(sin θ – cos θ)) [∵ (cos θ – sin θ) = -(sin θ – cos θ)]
= (sin³ θ – cos³ θ)/(cos θ sin θ (sin θ – cos θ))
= ((sin θ – cos θ)(sin² θ + cos² θ + cos θ sin θ))/(cos θ sin θ (sin θ – cos θ)) [∵ a³ – b³ = (a – b)(a² + b² + ab)]
= (1 + cos θ sin θ)(cos θ sin θ)
= (1/cos θ sin θ) + (cos θ sin θ /cos θ sin θ)
= sec θ cosec θ + 1 = RHS
(iv) (1 + sec A)/(sec A) = (sin² A)/1 – cos A)
LHS = (1 + sec A)(sec A)
= (1 + 1/cos A)/(1/cos A) [∵ sec A = 1/cos A]
= ((cos A + 1)/cos A)/(1/cos A)
= (1 + cos A)/1
= (1 + cos A)/1 × (1 – cos A)/(1 – cos A)
= (1 – cos² A)/(1 – cos A)
= (sin² A)/(1 – cos A) [∵ 1 – cos² A = sin² A]
= RHS
(v) (cos A – sin A + 1)/(cos A + sin A -1) = cosec A + cot A
LHS = (cos A – sin A + 1)/(cos A + sin A – 1)
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A) [Dividing Numerator and Denominator by sin A]
= (cot A + cosec A – (1))/(cot A + 1 – cosec A)]
= (cot A + cosec A – (cosec A + cot A)(cosec A – cot A))/(cot A + 1 – cosec A) [∵ cosec² A – cot² A = 1]
= (cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)/(cot A + 1 – cosec A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A = RHS
(vi) √((1 + sin A)/(1 – sin A)) = sec A + tan A
LHS = √((1 + sin A)/(1 – sin A))
= √((1 + sin A)/(1 – sin A) × (1 + sin A)/(1 + sin A)) = √((1 + sin A)²/(1 – sin A))
= √((1 + sin A)²/(cos² A)) [∵ 1 – sin² A = cos² A]
= (1 + sin A)/(cos A)
= (1/cos A) + (sin A/cos A)
= sec A + tan A = RHS
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
LHS = (sin A + cosec A)² + (cos A + sec A)²
= sin² A + cosec² A + 2 sin A cosec A + cos² A + sec² A + 2 cos A sec A
= (sin² A + cos² A) + cosec² A + 2 + sec² A + 2 [∵ cos A sec A = 1, sin A cosec A = 1]
= 1 + (1 + cot² A) + 2 + (1 + tan² A) + 2 [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= 7 + tan² A + cot² A = RHS
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
LHS = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin² A)/sin A)((1 – cos² A)/cos A)
= (cos² A / sin A)(sin ² A / cos A)
= sin A cos A …(i)
= RHS = 1/(tan A + cot A)
= (1/((sin A / sin A) + (cos A / sin A)) = (1/((sin² A + cos² A)/(cos A sin A))) = (1/(1/cos A sin A))
= cos A sin A …(ii)
From equation (i) and (ii), we get
LHS = RHS
(x) (1 + tan² A)/(1 + cot² A)
= sec² A / cosec² A [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= (1/cos² A)/(1/sin² A) = 1/(cos² A) × (sin² A)/1 = tan² A = RHS
Now, ((1 – tan A)/(1 – cot A))²
= ((1 – ((sin A)/(cos A)))/(1 – ((cos A)/(sin A))) = (((cos A – sin A)/(cos A))/((sin A – cos A)/(sin A)))²
= ((cos A – sin A)/(cos A) × (sin A)/(sin A – cos A))² = (- (sin A – cos A)/(cos A) × (sin A)/(sin A – cos A))²
= (- sin A / cos A)² = tan² A = RHS
Given that: tan(A + B) = √3 ⇒ tan (A+B) = tan 60° [∵ tan 60° = √3] ⇒ A+B= 60° ...(i) Given that: tan (A - B) = 1/√3 ⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3] ⇒ A-B = 30° ...(ii) Solving the equations (i) and (ii), we get 2A = 90° ⇒ A = 45° From equation (1), we get 45°+B = 60° ⇒ B = 15° Hence, A = 45°Read more
Given that: tan(A + B) = √3
⇒ tan (A+B) = tan 60° [∵ tan 60° = √3]
⇒ A+B= 60° …(i)
Given that: tan (A – B) = 1/√3
⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3]
⇒ A-B = 30° …(ii)
Solving the equations (i) and (ii), we get
2A = 90° ⇒ A = 45°
From equation (1), we get
45°+B = 60° ⇒ B = 15°
Hence, A = 45° and B = 15°
See this video Solution for better understanding 🙌😀
Given that: cot 0 = 7/8 Let cot 0=where k is a real number. In △ABC, by Pythagoras theorem, we have AC² = BC²+AB² = (8k)²+(7k)² = 64k²+49k² = 113k² ⇒ AC = √(113k²) = √(113k) (i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ)) = ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113)) = (1-(8/√113)²)/(1-(7/√113)²)Read more
Given that: cot 0 = 7/8
Let cot 0=where k is a real number.
In △ABC, by Pythagoras theorem, we have
AC² = BC²+AB²
= (8k)²+(7k)²
= 64k²+49k²
= 113k²
⇒ AC = √(113k²) = √(113k)
(i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ))
= ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113))
= (1-(8/√113)²)/(1-(7/√113)²) = (1- 64/113)/(1- 49/113) = ((113-64)/113)/((113-49)/113) = 49/64
(ii) cot² θ = (cot θ)² = (7/8)² = 49/64
Here is the Video explanation of the above question😀👇
Given that: sec 0 = 13/12 Let sec 0 = 13k/12k, where k is a real number. In △ABC, by Pythagoras theorem, we have BC² = AC² - AB² = (13k)² - (12k)² = 169k² 144k² = 25k² ⇒ BC = √(25k²) = 5k Hence, sin 0 = BC/AC = 5k/13k = 5/13 cos 0 = AB/AC = 12k/13k = 12/13 tan 0 = BC/AB = 5k/12k = 5/12 cose 0 = AC/BRead more
Given that: sec 0 = 13/12
Let sec 0 = 13k/12k, where k is a real number.
In △ABC, by Pythagoras theorem, we have
BC² = AC² – AB²
= (13k)² – (12k)²
= 169k² 144k²
= 25k²
⇒ BC = √(25k²) = 5k
Hence, sin 0 = BC/AC = 5k/13k = 5/13
cos 0 = AB/AC = 12k/13k = 12/13
tan 0 = BC/AB = 5k/12k = 5/12
cose 0 = AC/BC = 13k/5k = 13/5 and cot 0 = AB/BC = 12k/5k = 12/5
See the below video for better explanation of the above question👇😀
Given that: cos A= cos B cos A = cos B ⇒ AP/AQ = BC/BD ⇒ AP/BC = AQ/BD Let AP/BC = AQ/BC = k ...(i) Therefore, AP = k(BC) and AQ = k(BD) Now, In △APQ and △BCD PQ/CD = √((AQ²-AP²))/(√(BD²-BC²)) = (√((k.BD)²-(k.BC)²))/(√(BD²-BC²)) = (k√(BD²-BC²))/(√(BD²-BC²)) = k ...(ii) From the equation (i) and (ii)Read more
Given that: cos A= cos B
cos A = cos B
⇒ AP/AQ = BC/BD
⇒ AP/BC = AQ/BD
Let AP/BC = AQ/BC = k …(i)
Therefore, AP = k(BC) and AQ = k(BD)
Now, In △APQ and △BCD
PQ/CD = √((AQ²-AP²))/(√(BD²-BC²))
= (√((k.BD)²-(k.BC)²))/(√(BD²-BC²))
= (k√(BD²-BC²))/(√(BD²-BC²)) = k …(ii)
From the equation (i) and (ii), we get
AP/BC = AQ/BD = PQ/CD
So, △APQ ∼ △BCD [SSS similarity criteria]
Hence, ∠A = ∠B
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosec θ - cot θ)² = (1 - cos θ)(1 + cos θ) LHS = (cosec θ - cot θ)² = (1/sin θ - cos θ/sin θ) = ((1 - cos θ)/sin θ)² = ((1 - cos θ)²)/(sin² θ) = ((1 - cos θ)²)(1 - cos² θ) [∵ sin² θ = 1 - cos² θ] = ((1 - cos θ)(1 - cos θ))/((1 - cos θ)(1 + cos θ)) = (1 - cos θ)/(1 + cos θ) = RHS (ii) (cos A)/(1Read more
(i) (cosec θ – cot θ)² = (1 – cos θ)(1 + cos θ)
LHS = (cosec θ – cot θ)²
= (1/sin θ – cos θ/sin θ)
= ((1 – cos θ)/sin θ)²
= ((1 – cos θ)²)/(sin² θ)
= ((1 – cos θ)²)(1 – cos² θ) [∵ sin² θ = 1 – cos² θ]
= ((1 – cos θ)(1 – cos θ))/((1 – cos θ)(1 + cos θ))
= (1 – cos θ)/(1 + cos θ) = RHS
(ii) (cos A)/(1 + sin A) + (1 + sin A)/(cos A) = 2 sec A
LHS = (cos A)(1 + sin A) + (1 + sin A)/(cos A)
= (cos² A) + (1 + sin A)²/((1 + sin A)cos A)
= (cos² A + 1 + sin² A + 2 sin A)/((1 + sin A)cos A)
= (1 + 1 + 2 sin A)/((1 + sin A)cos A)) [∵ sin² A + cos² A = 1]
= (2 + 2 sin A)/((1 + sin A)cos A)
= (2(1 + sin A))((1 + sin A)cos A) = 2/cos A = 2 sec A = RHS
(iii) tan θ /(1 – cot θ) + cot θ /(1 – tan θ) = 1 + sec θ cosec θ
LHS = tan θ /(1 – cot θ) + cot θ /(1 – tan θ)
= [(sin θ /cos θ)/(1 – (cos θ /sin θ))] + [(cos θ /sin θ)/(1 – sin cos θ /sin θ /coscos θ /sin θ)] [∵ tan θ = sin θ /cos θ, cot θ = cos θ /sin θ]
= [(sin θ /cos θ)/((sin θ – cos θ)/sin θ)]+[(cos θ /sin θ)/((cos θ – sin θ)/cos θ)]
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(cos θ – sin θ))
= sin² θ /(cos θ(sin θ – cos θ)) + cos² θ /(sin θ(sin θ – cos θ)) [∵ (cos θ – sin θ) = -(sin θ – cos θ)]
= (sin³ θ – cos³ θ)/(cos θ sin θ (sin θ – cos θ))
= ((sin θ – cos θ)(sin² θ + cos² θ + cos θ sin θ))/(cos θ sin θ (sin θ – cos θ)) [∵ a³ – b³ = (a – b)(a² + b² + ab)]
= (1 + cos θ sin θ)(cos θ sin θ)
= (1/cos θ sin θ) + (cos θ sin θ /cos θ sin θ)
= sec θ cosec θ + 1 = RHS
(iv) (1 + sec A)/(sec A) = (sin² A)/1 – cos A)
LHS = (1 + sec A)(sec A)
= (1 + 1/cos A)/(1/cos A) [∵ sec A = 1/cos A]
= ((cos A + 1)/cos A)/(1/cos A)
= (1 + cos A)/1
= (1 + cos A)/1 × (1 – cos A)/(1 – cos A)
= (1 – cos² A)/(1 – cos A)
= (sin² A)/(1 – cos A) [∵ 1 – cos² A = sin² A]
= RHS
(v) (cos A – sin A + 1)/(cos A + sin A -1) = cosec A + cot A
LHS = (cos A – sin A + 1)/(cos A + sin A – 1)
= (cot A – 1 + cosec A)/(cot A + 1 – cosec A) [Dividing Numerator and Denominator by sin A]
= (cot A + cosec A – (1))/(cot A + 1 – cosec A)]
= (cot A + cosec A – (cosec A + cot A)(cosec A – cot A))/(cot A + 1 – cosec A) [∵ cosec² A – cot² A = 1]
= (cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)/(cot A + 1 – cosec A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A = RHS
(vi) √((1 + sin A)/(1 – sin A)) = sec A + tan A
LHS = √((1 + sin A)/(1 – sin A))
= √((1 + sin A)/(1 – sin A) × (1 + sin A)/(1 + sin A)) = √((1 + sin A)²/(1 – sin A))
= √((1 + sin A)²/(cos² A)) [∵ 1 – sin² A = cos² A]
= (1 + sin A)/(cos A)
= (1/cos A) + (sin A/cos A)
= sec A + tan A = RHS
(vii) (sin θ – 2 sin³ θ)/(2 cos³ θ – cos θ) = tan θ
LHS = (sin θ – 2 sin³ θ)/(2 cos³ θ – cos θ)
= (sin θ(1 – 2 sin² θ))/(cos θ (2 cos² θ – 1))
= (sin θ(1 – 2 sin² θ))/(cos θ [2(1 – sin² θ) – 1]) [∵ cos²θ = 1 – sin²θ]
= (sin θ(1 – 2 sin² θ))/(cos θ (2 – 2 cos² θ – 1))
= (sin θ(1 – 2 sin² θ))/(cos θ (1 – 2 sin² θ))
= sin θ /cos θ = tan θ = RHS
(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A
LHS = (sin A + cosec A)² + (cos A + sec A)²
= sin² A + cosec² A + 2 sin A cosec A + cos² A + sec² A + 2 cos A sec A
= (sin² A + cos² A) + cosec² A + 2 + sec² A + 2 [∵ cos A sec A = 1, sin A cosec A = 1]
= 1 + (1 + cot² A) + 2 + (1 + tan² A) + 2 [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= 7 + tan² A + cot² A = RHS
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
LHS = (cosec A – sin A)(sec A – cos A)
= (1/sin A – sin A)(1/cos A – cos A)
= ((1 – sin² A)/sin A)((1 – cos² A)/cos A)
= (cos² A / sin A)(sin ² A / cos A)
= sin A cos A …(i)
= RHS = 1/(tan A + cot A)
= (1/((sin A / sin A) + (cos A / sin A)) = (1/((sin² A + cos² A)/(cos A sin A))) = (1/(1/cos A sin A))
= cos A sin A …(ii)
From equation (i) and (ii), we get
LHS = RHS
(x) (1 + tan² A)/(1 + cot² A)
= sec² A / cosec² A [∵ cosec² A = 1 + cot² A, sec² A = 1 + tan² A]
= (1/cos² A)/(1/sin² A) = 1/(cos² A) × (sin² A)/1 = tan² A = RHS
Now, ((1 – tan A)/(1 – cot A))²
= ((1 – ((sin A)/(cos A)))/(1 – ((cos A)/(sin A))) = (((cos A – sin A)/(cos A))/((sin A – cos A)/(sin A)))²
= ((cos A – sin A)/(cos A) × (sin A)/(sin A – cos A))² = (- (sin A – cos A)/(cos A) × (sin A)/(sin A – cos A))²
= (- sin A / cos A)² = tan² A = RHS
Here is the video solution 😄👇
See lessIf tan (A + B) = √3 and tan (A – B) = 1/√3 ; 0° B, find A and B.
Given that: tan(A + B) = √3 ⇒ tan (A+B) = tan 60° [∵ tan 60° = √3] ⇒ A+B= 60° ...(i) Given that: tan (A - B) = 1/√3 ⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3] ⇒ A-B = 30° ...(ii) Solving the equations (i) and (ii), we get 2A = 90° ⇒ A = 45° From equation (1), we get 45°+B = 60° ⇒ B = 15° Hence, A = 45°Read more
Given that: tan(A + B) = √3
⇒ tan (A+B) = tan 60° [∵ tan 60° = √3]
⇒ A+B= 60° …(i)
Given that: tan (A – B) = 1/√3
⇒ tan(A-B) = tan 30° [∵ tan 30° = 1/√3]
⇒ A-B = 30° …(ii)
Solving the equations (i) and (ii), we get
2A = 90° ⇒ A = 45°
From equation (1), we get
45°+B = 60° ⇒ B = 15°
Hence, A = 45° and B = 15°
See this video Solution for better understanding 🙌😀
See lessIf cot θ = 7/8, evaluate: (i) (1-sin) (1+sinθ) / (1-cosθ) (1+cosθ) (ii) cot²θ
Given that: cot 0 = 7/8 Let cot 0=where k is a real number. In △ABC, by Pythagoras theorem, we have AC² = BC²+AB² = (8k)²+(7k)² = 64k²+49k² = 113k² ⇒ AC = √(113k²) = √(113k) (i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ)) = ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113)) = (1-(8/√113)²)/(1-(7/√113)²)Read more
Given that: cot 0 = 7/8
Let cot 0=where k is a real number.
In △ABC, by Pythagoras theorem, we have
AC² = BC²+AB²
= (8k)²+(7k)²
= 64k²+49k²
= 113k²
⇒ AC = √(113k²) = √(113k)
(i) ((1+sin θ)(1-sin 9))/((1+cos θ)(1-cos θ))
= ((1+ 8/√113)(1- 8/√113))/((1+ 7√113)(1- 7/√113))
= (1-(8/√113)²)/(1-(7/√113)²) = (1- 64/113)/(1- 49/113) = ((113-64)/113)/((113-49)/113) = 49/64
(ii) cot² θ = (cot θ)² = (7/8)² = 49/64
Here is the Video explanation of the above question😀👇
See lessGiven sec θ = 13/12, Calculate all other trigonometric ratios.
Given that: sec 0 = 13/12 Let sec 0 = 13k/12k, where k is a real number. In △ABC, by Pythagoras theorem, we have BC² = AC² - AB² = (13k)² - (12k)² = 169k² 144k² = 25k² ⇒ BC = √(25k²) = 5k Hence, sin 0 = BC/AC = 5k/13k = 5/13 cos 0 = AB/AC = 12k/13k = 12/13 tan 0 = BC/AB = 5k/12k = 5/12 cose 0 = AC/BRead more
Given that: sec 0 = 13/12
Let sec 0 = 13k/12k, where k is a real number.
In △ABC, by Pythagoras theorem, we have
BC² = AC² – AB²
= (13k)² – (12k)²
= 169k² 144k²
= 25k²
⇒ BC = √(25k²) = 5k
Hence, sin 0 = BC/AC = 5k/13k = 5/13
cos 0 = AB/AC = 12k/13k = 12/13
tan 0 = BC/AB = 5k/12k = 5/12
cose 0 = AC/BC = 13k/5k = 13/5 and cot 0 = AB/BC = 12k/5k = 12/5
See the below video for better explanation of the above question👇😀
See lessIf angle A and angle B are acute angles such that cos A = cos B, then show that angle A = angle B.
Given that: cos A= cos B cos A = cos B ⇒ AP/AQ = BC/BD ⇒ AP/BC = AQ/BD Let AP/BC = AQ/BC = k ...(i) Therefore, AP = k(BC) and AQ = k(BD) Now, In △APQ and △BCD PQ/CD = √((AQ²-AP²))/(√(BD²-BC²)) = (√((k.BD)²-(k.BC)²))/(√(BD²-BC²)) = (k√(BD²-BC²))/(√(BD²-BC²)) = k ...(ii) From the equation (i) and (ii)Read more
Given that: cos A= cos B
cos A = cos B
⇒ AP/AQ = BC/BD
⇒ AP/BC = AQ/BD
Let AP/BC = AQ/BC = k …(i)
Therefore, AP = k(BC) and AQ = k(BD)
Now, In △APQ and △BCD
PQ/CD = √((AQ²-AP²))/(√(BD²-BC²))
= (√((k.BD)²-(k.BC)²))/(√(BD²-BC²))
= (k√(BD²-BC²))/(√(BD²-BC²)) = k …(ii)
From the equation (i) and (ii), we get
AP/BC = AQ/BD = PQ/CD
So, △APQ ∼ △BCD [SSS similarity criteria]
Hence, ∠A = ∠B
Video explanation of this question👌🤗
See less