Electric Generator works on the principle of electromagnetic induction which obeys Fleming’s Right Hand Rule. When coil is moved inside a magnetic field a current is induced in the coil. The electric current is thus ‘generated’ by electric generator.
Electric Generator works on the principle of electromagnetic induction which obeys Fleming’s Right Hand Rule. When coil is moved inside a magnetic field a current is induced in the coil. The electric current is thus ‘generated’ by electric generator.
For electromagnetic induction; the coil and the magnet should be in relative motion. This can be ensured by any of the following two ways: (a) The coil should be moved within a magnetic field. (b) The magnet should be moved and coil can be kept static.
For electromagnetic induction; the coil and the magnet should be in relative motion. This can be ensured by any of the following two ways:
(a) The coil should be moved within a magnetic field.
(b) The magnet should be moved and coil can be kept static.
In an electric motor, after every half rotation the direction of coil gets reversed due to change in orientation of the magnetic field. To ensure a continuous rotation; a split ring is attached to the coil so that the polarity of the coil changes after every half rotation. This changes the directionRead more
In an electric motor, after every half rotation the direction of coil gets reversed due to change in orientation of the magnetic field. To ensure a continuous rotation; a split ring is attached to the coil so that the polarity of the coil changes after every half rotation. This changes the direction of current and thus the armature keeps on rotating continuously.
Principle of Electric Motor: The electric motor works on the principle of Fleming’s Left Hand Rule. When a rectangular coil is placed within a magnetic field and current is passed through the coil, there is deflection in the coil. The deflection changes into rotation of coil because of split ring coRead more
Principle of Electric Motor: The electric motor works on the principle of Fleming’s Left Hand Rule. When a rectangular coil is placed within a magnetic field and current is passed through the coil, there is deflection in the coil. The deflection changes into rotation of coil because of split ring commutator in the motor.
Fleming’s Left Hand Rule states that if the left hand is stretched in a way that the index finger, the middle finger and the thumb are in mutually perpendicular directions; then the index finger and middle finger of a stretched left hand show the direction of magnetic field and direction of electricRead more
Fleming’s Left Hand Rule states that if the left hand is stretched in a way that the index finger, the middle finger and the thumb are in mutually perpendicular directions; then the index finger and middle finger of a stretched left hand show the direction of magnetic field and direction of electric current respectively and the thumb shows the direction of motion or force acting on the conductor. The directions of electric current, magnetic field and force are similar to three mutually perpendicular axes, i.e. x, y and z axes.
This question can be solved by using Fleming’s Left Hand Rule. We know that the direction of current is opposite to the direction of electron’s movement and hence it would be same as the direction of proton’s movement. So, the direction of current is towards west. As per Fleming’s Left Hand Rule; thRead more
This question can be solved by using Fleming’s Left Hand Rule. We know that the direction of current is opposite to the direction of electron’s movement and hence it would be same as the direction of proton’s movement. So, the direction of current is towards west. As per Fleming’s Left Hand Rule; the middle finger shows the direction of current, the forefinger shows the direction of magnetic field and the thumb shows the direction of motion. Here, the deflection is towards north, i.e. in north westerly direction and hence, the direction of magnetic field would be towards north, i.e. upward.
(c) and (d), i.e. velocity and mass of proton change when it enters a magnetic field. When a proton enters a magnetic field it starts moving on a circular path. Because of its movement along a circular path it attains angular momentum. We know that momentum is a product of mass and velocity.
(c) and (d), i.e. velocity and mass of proton change when it enters a magnetic field. When a proton enters a magnetic field it starts moving on a circular path. Because of its movement along a circular path it attains angular momentum. We know that momentum is a product of mass and velocity.
current is flowing clockwise through a circular loop. The direction of magnetic field around the conductor can be known by using the right hand thumb rule. As the figure shows, the magnetic field would be towards the plane of the paper when it is inside the loop. On the other hand, the magnetic fielRead more
current is flowing clockwise through a circular loop. The direction of magnetic field around the conductor can be known by using the right hand thumb rule. As the figure shows, the magnetic field would be towards the plane of the paper when it is inside the loop. On the other hand, the magnetic field would be away from the paper when it is outside the loop.
Name some sources of direct current.
Electrochemical cell, DC generator, photovoltaic cell, etc.
Electrochemical cell, DC generator, photovoltaic cell, etc.
See lessState the principle of an electric generator.
Electric Generator works on the principle of electromagnetic induction which obeys Fleming’s Right Hand Rule. When coil is moved inside a magnetic field a current is induced in the coil. The electric current is thus ‘generated’ by electric generator.
Electric Generator works on the principle of electromagnetic induction which obeys Fleming’s Right Hand Rule. When coil is moved inside a magnetic field a current is induced in the coil. The electric current is thus ‘generated’ by electric generator.
See lessExplain different ways to induce current in a coil.
For electromagnetic induction; the coil and the magnet should be in relative motion. This can be ensured by any of the following two ways: (a) The coil should be moved within a magnetic field. (b) The magnet should be moved and coil can be kept static.
For electromagnetic induction; the coil and the magnet should be in relative motion. This can be ensured by any of the following two ways:
See less(a) The coil should be moved within a magnetic field.
(b) The magnet should be moved and coil can be kept static.
What is the role of the split ring in an electric motor?
In an electric motor, after every half rotation the direction of coil gets reversed due to change in orientation of the magnetic field. To ensure a continuous rotation; a split ring is attached to the coil so that the polarity of the coil changes after every half rotation. This changes the directionRead more
In an electric motor, after every half rotation the direction of coil gets reversed due to change in orientation of the magnetic field. To ensure a continuous rotation; a split ring is attached to the coil so that the polarity of the coil changes after every half rotation. This changes the direction of current and thus the armature keeps on rotating continuously.
See lessWhat is the principle of an electric motor?
Principle of Electric Motor: The electric motor works on the principle of Fleming’s Left Hand Rule. When a rectangular coil is placed within a magnetic field and current is passed through the coil, there is deflection in the coil. The deflection changes into rotation of coil because of split ring coRead more
Principle of Electric Motor: The electric motor works on the principle of Fleming’s Left Hand Rule. When a rectangular coil is placed within a magnetic field and current is passed through the coil, there is deflection in the coil. The deflection changes into rotation of coil because of split ring commutator in the motor.
See lessState Fleming’s left-hand rule.
Fleming’s Left Hand Rule states that if the left hand is stretched in a way that the index finger, the middle finger and the thumb are in mutually perpendicular directions; then the index finger and middle finger of a stretched left hand show the direction of magnetic field and direction of electricRead more
Fleming’s Left Hand Rule states that if the left hand is stretched in a way that the index finger, the middle finger and the thumb are in mutually perpendicular directions; then the index finger and middle finger of a stretched left hand show the direction of magnetic field and direction of electric current respectively and the thumb shows the direction of motion or force acting on the conductor. The directions of electric current, magnetic field and force are similar to three mutually perpendicular axes, i.e. x, y and z axes.
See lessA positively-charged particle (alpha-particle) projected towards west is deflected towards north by a magnetic field. The direction of magnetic field is
This question can be solved by using Fleming’s Left Hand Rule. We know that the direction of current is opposite to the direction of electron’s movement and hence it would be same as the direction of proton’s movement. So, the direction of current is towards west. As per Fleming’s Left Hand Rule; thRead more
This question can be solved by using Fleming’s Left Hand Rule. We know that the direction of current is opposite to the direction of electron’s movement and hence it would be same as the direction of proton’s movement. So, the direction of current is towards west. As per Fleming’s Left Hand Rule; the middle finger shows the direction of current, the forefinger shows the direction of magnetic field and the thumb shows the direction of motion. Here, the deflection is towards north, i.e. in north westerly direction and hence, the direction of magnetic field would be towards north, i.e. upward.
See lessWhich of the following property of a proton can change while it moves freely in a magnetic field?
(c) and (d), i.e. velocity and mass of proton change when it enters a magnetic field. When a proton enters a magnetic field it starts moving on a circular path. Because of its movement along a circular path it attains angular momentum. We know that momentum is a product of mass and velocity.
(c) and (d), i.e. velocity and mass of proton change when it enters a magnetic field. When a proton enters a magnetic field it starts moving on a circular path. Because of its movement along a circular path it attains angular momentum. We know that momentum is a product of mass and velocity.
See lessChoose the correct option. The magnetic field inside a long straight solenoid-carrying current
(d) Is the same at all points.
(d) Is the same at all points.
See lessConsider a circular loop of wire lying in the plane of the table. Let the current pass through the loop clockwise. Apply the right-hand rule to find out the direction of the magnetic field inside and outside the loop.
current is flowing clockwise through a circular loop. The direction of magnetic field around the conductor can be known by using the right hand thumb rule. As the figure shows, the magnetic field would be towards the plane of the paper when it is inside the loop. On the other hand, the magnetic fielRead more
current is flowing clockwise through a circular loop. The direction of magnetic field around the conductor can be known by using the right hand thumb rule. As the figure shows, the magnetic field would be towards the plane of the paper when it is inside the loop. On the other hand, the magnetic field would be away from the paper when it is outside the loop.
See less