Which of the formula use to explan the terms of an arithmetic progression.
What is the another way to represent an arithmetic progression.
What is the general formula for the nth term of an AP.
Class X Maths, Page No:100, Questions No:4 Part (xii) Chapter 5 EXERCISE 5.1.
Which of the following are APs ? If they form an AP, find the common difference d and write three more terms. √2, √8, √18 , √32, . . .
Share
√2, √8, √18 , √32, . . .
a₂ – a₁ = √8 – √2 = 2√2 – √2 = √2
a₃ – a₂ = √18 – √8 = 3√2 – 2√2 = √2
a₄ – a₃ = √32 – √18 = 4√2 – 3√2 = √2
The difference between the successive terms are same Hence, it is an A.P.
Common difference = √2, next three terms of this AP is as follows:
Fifth term a₅ = a₄ + d = √32 + √2 = 4√2 + √2 = 5√2 = √50
Sixth term a₆ = a₅ + d = 5√2 + √2 = 6√2 = √72
Seventh term a₇ = a₆ + d = 6√2 + √2 = 7√2 = √98