Taahira
  • 4

Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer: (i) (– 1, – 2), (1, 0), (– 1, 2), (– 3, 0) (ii) (–3, 5), (3, 1), (0, 3), (–1, – 4) (iii) (4, 5), (7, 6), (4, 3), (1, 2)

  • 4

NCERT Solutions for Class 10 Maths Chapter 7
Important NCERT Questions
Coordinate Geometry
NCERT Books for Session 2022-2023
CBSE Board and UP Board Others state Board
EXERCISE 7.1
Page No:161
Questions No:6

Share

2 Answers

  1. Get Hindi Medium and English Medium NCERT Solution for Class 10 Maths to download.
    Please follow the link to visit website for first and second term exams solutions.
    https://www.tiwariacademy.com/ncert-solutions/class-10/maths/chapter-7/

    • 2
  2. (i) Given points A(-1,-2), B(1, 0),C(-1, 2) and D(-3,0).
    AB = √([1-(-1)]²+[0-(-2)]²) = √(4+4) = √8 = 2√2
    BC = √((-1-1)²+(2-0)²) = √(4+4) = √8 = 2√2
    CD = √([-3-(-1)]²)+(0-2)²) = √(4+4) = √8 = 2√2
    DA = √([-1-(-3)]²)+(-2-0)²) = √(4+4) √8 = 2√2
    All the sides of quadrilateral are equal, so it may be a square or rhombus on the basis of its diagonal.
    AC = √([1-(-1)]²+[2-(-2)]²) = √(0+16) = 4
    BD = √((-3-1)²+(0-0)²) = √(16+0) = 4
    Here, AB = BC = CD = DA and AC = BD
    Hence, ABCD is a square.

    (ii) Given points: A(-3,5), B(3,1), C(0,3) and D(-1,-4).
    AB = √([3-(-3)]²+(1-5)²) = √(36+6) = √52 = 2√13
    BC = √((0-3)²+(3-1)²) = √(9+4) = √13
    CD = √(1-0)²+(-4-3)²) = √(1+49) = √50 = 5√2
    DA = √([-3-(-1)]²+[5-(-4)]²) = √(4+81) = √85
    AC = √((-1-3)²+(-4-1)²) = √(16+25) = √41
    BD = √((-1-3)²+(-4-1)²) = √(16+25) = √41
    Here, AC+BC = AB, it means the point C lies on side AB or A,B,C are collinear.
    Hence, the quadrilateral ABCD is not possible.

    (iii) Given points: A(4,5), B(7,6), C(4,3) and D(1,2).
    AB = √(7-4)²+(6-5)²) = √(9+1) = √10
    BC = √((4-7)²+(3-6)²) = √(9+9) = √18
    CD = √((1-4)²+(2-3)²) = √(9+1) = √10
    DA = √((4-1)²+(5-2)]²) = √(9+9) = √18
    The opposite sides of quadrilateral are equal. It may be a parallelogram or rectangle. It can be justified with the help of lengths of its diagonal.
    AC = √((4-4)²+(3-5)²) = √(0+4) = 2
    BD = √((1-7)²+(2-6)²) = √(36+16) = √52 = 2√13
    Here, AB = CD, BC = AD and AC ≠ BD.
    Hence, ABCD is a parallelogram.

    Here is the video explanation 😃👇

    • 1
Leave an answer

Leave an answer

Browse