The tiny pores present on the surfaces of leaves, called stomata, help in the exchange of gases. Each stoma consists of bean-shaped or dumbbell-shaped guard cells. The epidermal cells surrounding the guard cells are modified to form subsidiary cells. The opening and closing of the guard cells is cauRead more
The tiny pores present on the surfaces of leaves, called stomata, help in the exchange of gases. Each stoma consists of bean-shaped or dumbbell-shaped guard cells. The epidermal cells surrounding the guard cells are modified to form subsidiary cells. The opening and closing of the guard cells is caused by a change in their turgidity. The inner walls of the guard cells are thick and elastic, while the outer walls are thin. The numerous microfibrils present in the guard cells facilitate the opening and closing of the guard cells.
At the time of the opening of the stomata, the turgidity of the guard cells increases. As a result, the outer walls bulge and the inner walls become crescent-shaped. The stomatal opening is facilitated by the radial arrangement of the microfibrils.
At the time of the closing of the stomata, the guard cells lose their turgidity, the outer and inner walls retain their original shapes, and the microfibrils get arranged longitudinally.
According to the pressure flow hypothesis, food is prepared in the plant leaves in the form of glucose. Before moving into the source cells present in the phloem, the prepared food is converted into sucrose. Water moves from the xylem vessels into the adjacent phloem, thereby increasing the hydrostaRead more
According to the pressure flow hypothesis, food is prepared in the plant leaves in the form of glucose. Before moving into the source cells present in the phloem, the prepared food is converted into sucrose. Water moves from the xylem vessels into the adjacent phloem, thereby increasing the hydrostatic pressure in the phloem. Consequently, the sucrose moves through the sieve cells of the phloem. The sucrose already present in the sink region is converted into starch or cellulose, thereby reducing the hydrostatic pressure in the sink cells. Hence, the pressure difference created between the source and the sink cells allows sugars to be translocated from the former to the latter. This starch or cellulose is finally removed from the sink cells through active transport.
What causes the opening and closing of guard cells of stomata during transpiration?
The tiny pores present on the surfaces of leaves, called stomata, help in the exchange of gases. Each stoma consists of bean-shaped or dumbbell-shaped guard cells. The epidermal cells surrounding the guard cells are modified to form subsidiary cells. The opening and closing of the guard cells is cauRead more
The tiny pores present on the surfaces of leaves, called stomata, help in the exchange of gases. Each stoma consists of bean-shaped or dumbbell-shaped guard cells. The epidermal cells surrounding the guard cells are modified to form subsidiary cells. The opening and closing of the guard cells is caused by a change in their turgidity. The inner walls of the guard cells are thick and elastic, while the outer walls are thin. The numerous microfibrils present in the guard cells facilitate the opening and closing of the guard cells.
At the time of the opening of the stomata, the turgidity of the guard cells increases. As a result, the outer walls bulge and the inner walls become crescent-shaped. The stomatal opening is facilitated by the radial arrangement of the microfibrils.
At the time of the closing of the stomata, the guard cells lose their turgidity, the outer and inner walls retain their original shapes, and the microfibrils get arranged longitudinally.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/
Explain pressure flow hypothesis of translocation of sugars in plants.
According to the pressure flow hypothesis, food is prepared in the plant leaves in the form of glucose. Before moving into the source cells present in the phloem, the prepared food is converted into sucrose. Water moves from the xylem vessels into the adjacent phloem, thereby increasing the hydrostaRead more
According to the pressure flow hypothesis, food is prepared in the plant leaves in the form of glucose. Before moving into the source cells present in the phloem, the prepared food is converted into sucrose. Water moves from the xylem vessels into the adjacent phloem, thereby increasing the hydrostatic pressure in the phloem. Consequently, the sucrose moves through the sieve cells of the phloem. The sucrose already present in the sink region is converted into starch or cellulose, thereby reducing the hydrostatic pressure in the sink cells. Hence, the pressure difference created between the source and the sink cells allows sugars to be translocated from the former to the latter. This starch or cellulose is finally removed from the sink cells through active transport.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-11/biology/chapter-11/