A cut diamond sparkles due to total internal reflection, which corresponds to option [C]. The geometric arrangement of a diamond's facets, combined with its high refractive index, allows light entering the diamond to bounce internally from facet to facet rather than escaping. This phenomenon, knownRead more
A cut diamond sparkles due to total internal reflection, which corresponds to option [C]. The geometric arrangement of a diamond’s facets, combined with its high refractive index, allows light entering the diamond to bounce internally from facet to facet rather than escaping. This phenomenon, known as total internal reflection, ensures that a significant portion of light remains trapped within the diamond, enhancing its brilliance and dispersion of colors. The precise cutting of diamonds into facets optimizes this effect, scattering light into a spectrum of colors called “fire.” This inherent property of diamonds, stemming from their crystalline structure and high refractive index, distinguishes them as prized gemstones renowned for their exceptional sparkle and optical allure. Understanding the physics of light interaction within diamonds is crucial for gemologists and jewelers in evaluating and appreciating their beauty and value.
A solar eclipse occurs on a new moon day (Pratipada), which corresponds to option [A]. During this celestial event, the Moon moves directly between the Sun and Earth, aligning in such a way that its shadow falls on Earth's surface. This alignment blocks all or part of the Sun's light, creating a temRead more
A solar eclipse occurs on a new moon day (Pratipada), which corresponds to option [A]. During this celestial event, the Moon moves directly between the Sun and Earth, aligning in such a way that its shadow falls on Earth’s surface. This alignment blocks all or part of the Sun’s light, creating a temporary darkening of the sky during the day. Solar eclipses can be total, partial, or annular, depending on the alignment and distances between the Sun, Moon, and Earth. A total solar eclipse occurs when the Moon completely covers the Sun’s disk, a partial solar eclipse occurs when only part of the Sun is obscured, and an annular solar eclipse occurs when the Moon is too far from Earth to completely cover the Sun, leaving a ring (annulus) of sunlight visible around the Moon’s edges. Solar eclipses are dramatic astronomical events that occur periodically as the Moon orbits Earth and aligns with the Sun in its orbit.
A cricket player catches a fast-moving ball by pulling his hand back primarily because it may require applying less force (C). By doing so, the player extends the duration of contact with the ball, which reduces the impact force on the hand. This technique allows for better control and absorption ofRead more
A cricket player catches a fast-moving ball by pulling his hand back primarily because it may require applying less force (C). By doing so, the player extends the duration of contact with the ball, which reduces the impact force on the hand. This technique allows for better control and absorption of the ball’s momentum, increasing the likelihood of a successful catch. Additionally, pulling the hand back enables the player to cushion the impact more effectively, minimizing the risk of injury. This method also facilitates adjustments in hand positioning to intercept the ball’s trajectory accurately. Moreover, by reducing the rebound effect, the player can secure the catch more reliably. Overall, pulling the hand back is a strategic approach that enhances catching proficiency, contributes to team performance, and reduces the chance of mishaps during intense gameplay.
Force is the product of mass and acceleration (B). Newton's second law of motion states that force equals mass times acceleration (F = ma). This law describes how the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. In simpler tRead more
Force is the product of mass and acceleration (B). Newton’s second law of motion states that force equals mass times acceleration (F = ma). This law describes how the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. In simpler terms, the greater the mass of an object and the greater the acceleration applied to it, the greater the force exerted. Velocity is the rate of change of displacement, while weight is the force exerted on an object due to gravity. However, force is specifically determined by the mass of an object and the rate at which its velocity changes, which is represented by acceleration. Therefore, the correct option is mass and acceleration (B).
When a person lands on the Moon, there is a change in weight (C). Weight is the force exerted on an object due to gravity, and since the Moon has less gravity than Earth, the person's weight decreases. However, their mass remains unchanged. Mass is a measure of the amount of matter in an object, andRead more
When a person lands on the Moon, there is a change in weight (C). Weight is the force exerted on an object due to gravity, and since the Moon has less gravity than Earth, the person’s weight decreases. However, their mass remains unchanged. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the gravitational field. Therefore, while the person experiences a decrease in weight due to the weaker gravitational pull of the Moon, their mass remains the same as it was on Earth. This change in weight occurs because weight is directly proportional to the gravitational acceleration experienced by the person, which is significantly less on the Moon compared to Earth.
Why does a cut diamond sparkle?
A cut diamond sparkles due to total internal reflection, which corresponds to option [C]. The geometric arrangement of a diamond's facets, combined with its high refractive index, allows light entering the diamond to bounce internally from facet to facet rather than escaping. This phenomenon, knownRead more
A cut diamond sparkles due to total internal reflection, which corresponds to option [C]. The geometric arrangement of a diamond’s facets, combined with its high refractive index, allows light entering the diamond to bounce internally from facet to facet rather than escaping. This phenomenon, known as total internal reflection, ensures that a significant portion of light remains trapped within the diamond, enhancing its brilliance and dispersion of colors. The precise cutting of diamonds into facets optimizes this effect, scattering light into a spectrum of colors called “fire.” This inherent property of diamonds, stemming from their crystalline structure and high refractive index, distinguishes them as prized gemstones renowned for their exceptional sparkle and optical allure. Understanding the physics of light interaction within diamonds is crucial for gemologists and jewelers in evaluating and appreciating their beauty and value.
See lessWhen does solar eclipse occur on?
A solar eclipse occurs on a new moon day (Pratipada), which corresponds to option [A]. During this celestial event, the Moon moves directly between the Sun and Earth, aligning in such a way that its shadow falls on Earth's surface. This alignment blocks all or part of the Sun's light, creating a temRead more
A solar eclipse occurs on a new moon day (Pratipada), which corresponds to option [A]. During this celestial event, the Moon moves directly between the Sun and Earth, aligning in such a way that its shadow falls on Earth’s surface. This alignment blocks all or part of the Sun’s light, creating a temporary darkening of the sky during the day. Solar eclipses can be total, partial, or annular, depending on the alignment and distances between the Sun, Moon, and Earth. A total solar eclipse occurs when the Moon completely covers the Sun’s disk, a partial solar eclipse occurs when only part of the Sun is obscured, and an annular solar eclipse occurs when the Moon is too far from Earth to completely cover the Sun, leaving a ring (annulus) of sunlight visible around the Moon’s edges. Solar eclipses are dramatic astronomical events that occur periodically as the Moon orbits Earth and aligns with the Sun in its orbit.
See lessWhy does a cricket player catch a fast-moving ball by pulling his hand back?
A cricket player catches a fast-moving ball by pulling his hand back primarily because it may require applying less force (C). By doing so, the player extends the duration of contact with the ball, which reduces the impact force on the hand. This technique allows for better control and absorption ofRead more
A cricket player catches a fast-moving ball by pulling his hand back primarily because it may require applying less force (C). By doing so, the player extends the duration of contact with the ball, which reduces the impact force on the hand. This technique allows for better control and absorption of the ball’s momentum, increasing the likelihood of a successful catch. Additionally, pulling the hand back enables the player to cushion the impact more effectively, minimizing the risk of injury. This method also facilitates adjustments in hand positioning to intercept the ball’s trajectory accurately. Moreover, by reducing the rebound effect, the player can secure the catch more reliably. Overall, pulling the hand back is a strategic approach that enhances catching proficiency, contributes to team performance, and reduces the chance of mishaps during intense gameplay.
See lessForce is the product of
Force is the product of mass and acceleration (B). Newton's second law of motion states that force equals mass times acceleration (F = ma). This law describes how the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. In simpler tRead more
Force is the product of mass and acceleration (B). Newton’s second law of motion states that force equals mass times acceleration (F = ma). This law describes how the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. In simpler terms, the greater the mass of an object and the greater the acceleration applied to it, the greater the force exerted. Velocity is the rate of change of displacement, while weight is the force exerted on an object due to gravity. However, force is specifically determined by the mass of an object and the rate at which its velocity changes, which is represented by acceleration. Therefore, the correct option is mass and acceleration (B).
See lessWhen a person lands on the Moon, in his body
When a person lands on the Moon, there is a change in weight (C). Weight is the force exerted on an object due to gravity, and since the Moon has less gravity than Earth, the person's weight decreases. However, their mass remains unchanged. Mass is a measure of the amount of matter in an object, andRead more
When a person lands on the Moon, there is a change in weight (C). Weight is the force exerted on an object due to gravity, and since the Moon has less gravity than Earth, the person’s weight decreases. However, their mass remains unchanged. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the gravitational field. Therefore, while the person experiences a decrease in weight due to the weaker gravitational pull of the Moon, their mass remains the same as it was on Earth. This change in weight occurs because weight is directly proportional to the gravitational acceleration experienced by the person, which is significantly less on the Moon compared to Earth.
See less