A current induces in a solenoid if a bar magnet is moved relative to it. This is the principle of electromagnetic induction. (i) When a bar magnet is pushed into a coil of insulated copper wire, a current is induced in the coil. As a result of which the needle of the galvanometer deflects directionRead more
A current induces in a solenoid if a bar magnet is moved relative to it. This is the principle of electromagnetic induction.
(i) When a bar magnet is pushed into a coil of insulated copper wire, a current is induced in the coil. As a result of which the needle of the galvanometer deflects direction of current.
(ii) When the bar magnet is withdrawn from inside the coil of the insulated copper wire, a current is again induced in the coil in the opposite direction. As a result, the needle of the galvanometer deflects in the opposite direction.
(iii) When a bar magnet is held stationary inside the coil, no current will be induced in the coil. So, no deflection in the galvanometer.
Two circular coils A and B are placed close to each other. When the current in coil A is changed, the magnetic field associated with it also changes. As a result, the magnetic field around coil B also changes. This change in magnetic field lines around coil B induces an electric current in it. ThisRead more
Two circular coils A and B are placed close to each other. When the current in coil A is changed, the magnetic field associated with it also changes. As a result, the magnetic field around coil B also changes. This change in magnetic field lines around coil B induces an electric current in it. This is called electromagnetic induction.
(i) Right hand thumb rule : If the current carrying conductor is held in the right hand such that the thumb points in the direction of the current, then the direction of the curl of the fingers will give the direction of the magnetic field. (ii) Fleming’s left hand rule : NCERT Solutions for Class 1Read more
(i) Right hand thumb rule : If the current carrying conductor is held in the right hand such that the thumb points in the direction of the current, then the direction of the curl of the fingers will give the direction of the magnetic field. (ii) Fleming’s left hand rule : NCERT Solutions for Class 10 Science Chapter 13 Magnetic Effects of Electric Current Stretch the forefinger, the central finger and the thumb of the left hand mutually perpendicular to each other. If the forefinger points in the direction of the magnetic field, the middle finger in the direction of current, then the thumb points in the direction of force in the conductor. (iii) Fleming’s right hand rule : Stretch the thumb, forefinger and the central finger of the right hand mutually perpendicular to each other. If the forefinger points in the direction of magnetic field, thumb in the direction of motion of the conductor, then the middle finger points in the direction of current induced in the conductor.
Principle : The electric generator is based on the principle of electromagnetic induction. When a coil is rotated with respect to a magnetic field, the number of magnetic field lines through the coil changes. Due to this a current is induced in the coil whose direction can be found by Fleming’s righRead more
Principle : The electric generator is based on the principle of electromagnetic induction. When a coil is rotated with respect to a magnetic field, the number of magnetic field lines through the coil changes. Due to this a current is induced in the coil whose direction can be found by Fleming’s right hand rule.
Working : When the armature coil ABCD rotates in a magnetic field produced by the permanent magnets, it cuts through the magnetic lines of force. Due to the rotation of armature coil, the associated magnetic field changes and an induced electromagnetic force is produced in it. The direction of this induced electromotive force or current can be determined by using Fleming’s right hand rule. In first half cycle the current flows in one direction by brush B1 and in second it flows in opposite direction by brush B2. This process continues. So the current produced is alternating in nature. Functions of Brushes : Brushes in contact with rings provide the current for external use.
When neutral wire and live wire touch each other that they come in direct contact, the resistance of the circuit becomes small and a large amount of current flows through it. As a result of which, a large amount of heat is produced and the circuit catches fire.
When neutral wire and live wire touch each other that they come in direct contact, the resistance of the circuit becomes small and a large amount of current flows through it. As a result of which, a large amount of heat is produced and the circuit catches fire.
A coil of insulated copper wire is connected to a galvanometer. What will happen if a bar magnet is (i) pushed into the coil, (ii) withdrawn from inside the coil, (iii) held stationary inside the coil?
A current induces in a solenoid if a bar magnet is moved relative to it. This is the principle of electromagnetic induction. (i) When a bar magnet is pushed into a coil of insulated copper wire, a current is induced in the coil. As a result of which the needle of the galvanometer deflects directionRead more
A current induces in a solenoid if a bar magnet is moved relative to it. This is the principle of electromagnetic induction.
(i) When a bar magnet is pushed into a coil of insulated copper wire, a current is induced in the coil. As a result of which the needle of the galvanometer deflects direction of current.
(ii) When the bar magnet is withdrawn from inside the coil of the insulated copper wire, a current is again induced in the coil in the opposite direction. As a result, the needle of the galvanometer deflects in the opposite direction.
(iii) When a bar magnet is held stationary inside the coil, no current will be induced in the coil. So, no deflection in the galvanometer.
See lessTwo circular coils A and B are placed closed to each other. If the current in the coil A is changed, will some current be induced in the coil B? Give reason.
Two circular coils A and B are placed close to each other. When the current in coil A is changed, the magnetic field associated with it also changes. As a result, the magnetic field around coil B also changes. This change in magnetic field lines around coil B induces an electric current in it. ThisRead more
Two circular coils A and B are placed close to each other. When the current in coil A is changed, the magnetic field associated with it also changes. As a result, the magnetic field around coil B also changes. This change in magnetic field lines around coil B induces an electric current in it. This is called electromagnetic induction.
See lessState the rule to determine the direction of a (i) magnetic field produced around a straight conductor-carrying current, (ii) force experienced by a current-carrying straight conductor placed in a magnetic field which is perpendicular to it, and (iii) current induced in a coil due to its rotation in a magnetic field.
(i) Right hand thumb rule : If the current carrying conductor is held in the right hand such that the thumb points in the direction of the current, then the direction of the curl of the fingers will give the direction of the magnetic field. (ii) Fleming’s left hand rule : NCERT Solutions for Class 1Read more
(i) Right hand thumb rule : If the current carrying conductor is held in the right hand such that the thumb points in the direction of the current, then the direction of the curl of the fingers will give the direction of the magnetic field.
See less(ii) Fleming’s left hand rule : NCERT Solutions for Class 10 Science Chapter 13 Magnetic Effects of Electric Current Stretch the forefinger, the central finger and the thumb of the left hand mutually perpendicular to each other. If the forefinger points in the direction of the magnetic field, the middle finger in the direction of current, then the thumb points in the direction of force in the conductor.
(iii) Fleming’s right hand rule : Stretch the thumb, forefinger and the central finger of the right hand mutually perpendicular to each other. If the forefinger points in the direction of magnetic field, thumb in the direction of motion of the conductor, then the middle finger points in the direction of current induced in the conductor.
Explain the underlying principle and working of an electric generator by drawing a labelled diagram. What is the function of brushes?
Principle : The electric generator is based on the principle of electromagnetic induction. When a coil is rotated with respect to a magnetic field, the number of magnetic field lines through the coil changes. Due to this a current is induced in the coil whose direction can be found by Fleming’s righRead more
Principle : The electric generator is based on the principle of electromagnetic induction. When a coil is rotated with respect to a magnetic field, the number of magnetic field lines through the coil changes. Due to this a current is induced in the coil whose direction can be found by Fleming’s right hand rule.
Working : When the armature coil ABCD rotates in a magnetic field produced by the permanent magnets, it cuts through the magnetic lines of force. Due to the rotation of armature coil, the associated magnetic field changes and an induced electromagnetic force is produced in it. The direction of this induced electromotive force or current can be determined by using Fleming’s right hand rule. In first half cycle the current flows in one direction by brush B1 and in second it flows in opposite direction by brush B2. This process continues. So the current produced is alternating in nature.
See lessFunctions of Brushes : Brushes in contact with rings provide the current for external use.
When does an electric short circuit occur?
When neutral wire and live wire touch each other that they come in direct contact, the resistance of the circuit becomes small and a large amount of current flows through it. As a result of which, a large amount of heat is produced and the circuit catches fire.
When neutral wire and live wire touch each other that they come in direct contact, the resistance of the circuit becomes small and a large amount of current flows through it. As a result of which, a large amount of heat is produced and the circuit catches fire.
See less