Electric motors are used in all such devices where we want to convert electrical energy into mechanical energy so as to drive that machine. In our houses, electric motors are being fitted in electric fans, coolers, air conditioners, mixer grinders, washing machines, refrigerators, juicers, computersRead more
Electric motors are used in all such devices where we want to convert electrical energy into mechanical energy so as to drive that machine. In our houses, electric motors are being fitted in electric fans, coolers, air conditioners, mixer grinders, washing machines, refrigerators, juicers, computers etc. In factories, motors are used in almost all machines.
Principle A current-carrying conductor, when placed in a magnetic field, experiences a force. If the direction of the field and that of the current are mutually perpendicular then force acting on the conductor will be perpendicular to both and will be given by Fleming's left-hand rule. Due to this fRead more
Principle
A current-carrying conductor, when placed in a magnetic field, experiences a force. If the direction of the field and that of the current are mutually perpendicular then force acting on the conductor will be perpendicular to both and will be given by Fleming’s left-hand rule. Due to this force the conductor begins to move.
Working
Current in the coil ABCD enters from the source battery through conducting brush X and flows back to the battery through brush Y. The current in arm AB of the coil flows from A to B. In arm CD it flows from C to D, that is, opposite to the direction of current through arm AB. We find that the force acting on arm AB pushes it downwards while the force acting on arm CD pushes it upwards. Thus the coil and the axle O, mounted free to turn about an axis, rotate anti-clockwise. At half rotation, Q makes contact with the brush X and P with brush Y. Therefore the current in the coil gets reversed and flows along the path DCBA. The reversal of current also reverses the direction of force acting on the two arms AB and CD. Thus the arm AB of the coil that was earlier
pushed down is now pushed up and the arm CD previously pushed up is now pushed down. Therefore the coil and the axle rotate half a turn more in the same direction. The reversing of the current is repeated at each half rotation, giving rise to a continuous rotation of the coil and to the axle.
An electron beam moving horizontally from back wall towards the front wail is equivalent to a current flowing in the opposite direction (i.e., from front wall towards the back wall). The deflection of electron beam as seen by observer is to his right side and is shown in Figure. On applying Fleming'Read more
An electron beam moving horizontally from back wall towards the front wail is equivalent to a current flowing in the opposite direction (i.e., from front wall towards the back wall). The deflection of electron beam as seen by observer is to his right side and is shown in Figure. On applying Fleming’s left-hand rule we find that the magnetic field is acting in vertically downward direction.
The force experienced by a current-carrying conductor placed in a magnetic field is largest when the current-carrying conductor is placed in a direction perpendicular to that of magnetic field. For more answers visit to website: https://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-Read more
The force experienced by a current-carrying conductor placed in a magnetic field is largest when the current-carrying conductor is placed in a direction perpendicular to that of magnetic field.
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a resu1t, the resultant magnetic field become very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axisRead more
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a resu1t, the resultant magnetic field become very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axis of solenoid. Thus, the solenoid behaves like a bar magnet. One end of solenoid behaves as a magnetic North pole while the other end behaves as the South Pole.We can determine the magnetic poles formed in a solenoid. The end of the current-carrying solenoid, which attracts North Pole but repels South Pole of a bar magnet, is behaving as south magnetic pole. The other end, which attracts South Pole of a bar magnet but repels the North Pole, is behaving as north magnetic pole. It is because like poles repel but unlike poles attract each other.
Name some devices in which electric motors are used.
Electric motors are used in all such devices where we want to convert electrical energy into mechanical energy so as to drive that machine. In our houses, electric motors are being fitted in electric fans, coolers, air conditioners, mixer grinders, washing machines, refrigerators, juicers, computersRead more
Electric motors are used in all such devices where we want to convert electrical energy into mechanical energy so as to drive that machine. In our houses, electric motors are being fitted in electric fans, coolers, air conditioners, mixer grinders, washing machines, refrigerators, juicers, computers etc. In factories, motors are used in almost all machines.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/
Draw a labelled diagram of an electric motor. Explain its principle and working. What is the function of a split ring in an electric motor?
Principle A current-carrying conductor, when placed in a magnetic field, experiences a force. If the direction of the field and that of the current are mutually perpendicular then force acting on the conductor will be perpendicular to both and will be given by Fleming's left-hand rule. Due to this fRead more
Principle
A current-carrying conductor, when placed in a magnetic field, experiences a force. If the direction of the field and that of the current are mutually perpendicular then force acting on the conductor will be perpendicular to both and will be given by Fleming’s left-hand rule. Due to this force the conductor begins to move.
Working
Current in the coil ABCD enters from the source battery through conducting brush X and flows back to the battery through brush Y. The current in arm AB of the coil flows from A to B. In arm CD it flows from C to D, that is, opposite to the direction of current through arm AB. We find that the force acting on arm AB pushes it downwards while the force acting on arm CD pushes it upwards. Thus the coil and the axle O, mounted free to turn about an axis, rotate anti-clockwise. At half rotation, Q makes contact with the brush X and P with brush Y. Therefore the current in the coil gets reversed and flows along the path DCBA. The reversal of current also reverses the direction of force acting on the two arms AB and CD. Thus the arm AB of the coil that was earlier
pushed down is now pushed up and the arm CD previously pushed up is now pushed down. Therefore the coil and the axle rotate half a turn more in the same direction. The reversing of the current is repeated at each half rotation, giving rise to a continuous rotation of the coil and to the axle.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/
Imagine that you are sitting in a chamber with your back to one wall. An electron beam, moving horizontally from back wall towards the front wall, is deflected by a strong magnetic field to your right side. What is the direction of magnetic field?
An electron beam moving horizontally from back wall towards the front wail is equivalent to a current flowing in the opposite direction (i.e., from front wall towards the back wall). The deflection of electron beam as seen by observer is to his right side and is shown in Figure. On applying Fleming'Read more
An electron beam moving horizontally from back wall towards the front wail is equivalent to a current flowing in the opposite direction (i.e., from front wall towards the back wall). The deflection of electron beam as seen by observer is to his right side and is shown in Figure. On applying Fleming’s left-hand rule we find that the magnetic field is acting in vertically downward direction.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/
When is the force experienced by a current–carrying conductor placed in a magnetic field largest?
The force experienced by a current-carrying conductor placed in a magnetic field is largest when the current-carrying conductor is placed in a direction perpendicular to that of magnetic field. For more answers visit to website: https://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-Read more
The force experienced by a current-carrying conductor placed in a magnetic field is largest when the current-carrying conductor is placed in a direction perpendicular to that of magnetic field.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/
How does a solenoid behave like a magnet? Can you determine the north and south poles of a current–carrying solenoid with the help of a bar magnet? Explain.
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a resu1t, the resultant magnetic field become very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axisRead more
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a resu1t, the resultant magnetic field become very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axis of solenoid. Thus, the solenoid behaves like a bar magnet. One end of solenoid behaves as a magnetic North pole while the other end behaves as the South Pole.We can determine the magnetic poles formed in a solenoid. The end of the current-carrying solenoid, which attracts North Pole but repels South Pole of a bar magnet, is behaving as south magnetic pole. The other end, which attracts South Pole of a bar magnet but repels the North Pole, is behaving as north magnetic pole. It is because like poles repel but unlike poles attract each other.
For more answers visit to website:
See lesshttps://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/