1. x - 1/x = 3, x ≠ 0 ⇒ x² - 1 = 3x ⇒ x² - 3x - 1 = 0 For the quadratic equation x² - 3x - 1 = 0, we have a = 1, b = - 3 and c = - 1. Therefore, b² - 4ac = (-3)² - 4 × 1 × (-1) = 9 + 4 = 13 > 0 Hence, x = (3 ± √13)/2 [As x = (-b ±√(b²- 4ac))/2a] Either x = (3 + √13)/2 or x = (3 - √13)/2 Hence, the rRead more

    x – 1/x = 3, x ≠ 0
    ⇒ x² – 1 = 3x
    ⇒ x² – 3x – 1 = 0

    For the quadratic equation x² – 3x – 1 = 0, we have a = 1, b = – 3 and c = – 1.
    Therefore, b² – 4ac = (-3)² – 4 × 1 × (-1) = 9 + 4 = 13 > 0

    Hence, x = (3 ± √13)/2 [As x = (-b ±√(b²- 4ac))/2a]

    Either x = (3 + √13)/2 or x = (3 – √13)/2
    Hence, the roots of the quadratic equation are (3 + √13)/2 and (3 – √13)/2.

    See less
    • 2
  2. Let the smaller side = x m Therefore, hypotenuse = x + 60 m So, the longer side = x + 30 m According to the question, (x + 60)² = x² + (x + 30)² ⇒ x² + 120x +3600 = x² + x² + 60x + 900 ⇒ - x² + 60x + 2700 = 0 ⇒ x² - 60 - 2700 = 0 ⇒ x² - 90 + 30x - 2700 = 0 ⇒ x(x - 90) + 30 (x - 90) = 0 ⇒ (x - 90) (xRead more

    Let the smaller side = x m
    Therefore, hypotenuse = x + 60 m
    So, the longer side = x + 30 m
    According to the question, (x + 60)² = x² + (x + 30)²
    ⇒ x² + 120x +3600 = x² + x² + 60x + 900
    ⇒ – x² + 60x + 2700 = 0
    ⇒ x² – 60 – 2700 = 0
    ⇒ x² – 90 + 30x – 2700 = 0
    ⇒ x(x – 90) + 30 (x – 90) = 0
    ⇒ (x – 90) (x + 30) = 0
    ⇒ (x – 90) = 0 or ( x + 30 ) = 0
    Either x = 90 or x = – 30
    But, x ≠ – 30 ,as x is side of field which can’t be negative.
    Therefore, x = 90 and hence the smaller side = 90 m
    So, the longer side = 90 + 30 = 120 m

    See less
    • 1
  3. Let the larger number = x Let the smaller number = y Therefore, y² = 8x According to the question, x² - y² = 180 ⇒ x² - 8x = 180 [ As, y² = 8x ] ⇒ x² - 8x - 180 = 0 ⇒ x² - 18x + 10x - 180 = 0 ⇒ x(x - 18) +10 (x -18) = 0 ⇒ (x - 18) (x + 10) = 0 ⇒ (x - 18) = 0 or, (x + 10) = 0 Either x = 18 or x = - 1Read more

    Let the larger number = x
    Let the smaller number = y
    Therefore, y² = 8x
    According to the question, x² – y² = 180
    ⇒ x² – 8x = 180 [ As, y² = 8x ]
    ⇒ x² – 8x – 180 = 0
    ⇒ x² – 18x + 10x – 180 = 0
    ⇒ x(x – 18) +10 (x -18) = 0
    ⇒ (x – 18) (x + 10) = 0
    ⇒ (x – 18) = 0 or, (x + 10) = 0
    Either x = 18 or x = – 10
    But, x ≠ – 10, as x larger of the two numbers So, x = 18
    Therefore, the larger number = 18
    Hence the smaller number = y = √144 = 12

    See less
    • 1
  4. Let, the number of article = x Therefore, the cost of one article = 2x + 3 According to question, the total cost = x(2x + 3) = 90 ⇒ 2x² +3x = 90 ⇒ 2x² + 3x - 90 = 0 ⇒ 2x² + 15x - 12x - 90 = 0 ⇒ x(2x + 15) - 6 (2x + 15) = 0 ⇒ (2x + 15) (x - 6) = 0 ⇒ (2x + 15) = 0 or (x - 6) = 0 Either x = - 15/2 or xRead more

    Let, the number of article = x
    Therefore, the cost of one article = 2x + 3
    According to question, the total cost = x(2x + 3) = 90
    ⇒ 2x² +3x = 90
    ⇒ 2x² + 3x – 90 = 0
    ⇒ 2x² + 15x – 12x – 90 = 0
    ⇒ x(2x + 15) – 6 (2x + 15) = 0
    ⇒ (2x + 15) (x – 6) = 0
    ⇒ (2x + 15) = 0 or (x – 6) = 0
    Either x = – 15/2 or x = 6
    But, x ≠ – 15/2, as x is a number of articles.
    Therefore, x = 6 and the cost of each articles = 2x + 3 = 2 × 6 + 3 = 15
    Hence, the number of articles = 6 and the cost of each article is Rs 15.

    See less
    • 1