In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA. In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = ...(1) In ΔDEB. by pythagoras theorem, DE² + EB² = DB² ⇒ DE² + (EA + AB)² = DB² ⇒ (DE² + EA²) + AB² + 2EA × AB = DB² ⇒ DA² + AB² + 2EA × AB = DB² ...(ii) In ΔADF, by PythagoraRead more
In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA.
In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = …(1)
In ΔDEB. by pythagoras theorem, DE² + EB² = DB²
⇒ DE² + (EA + AB)² = DB²
⇒ (DE² + EA²) + AB² + 2EA × AB = DB²
⇒ DA² + AB² + 2EA × AB = DB² …(ii)
In ΔADF, by Pythagoras theorem, AD² = AF² + FD²
In ΔAFC, by pythagoras theorem
AC² = AF² + FC² = AF² + (DC – FD)² = AF² + DC² + FD² – 2DC × FD
= (AF² + FD²) + DC² – 2DC × FD
⇒ AC² = AD² + DC² – 2DC × FD …(iii)
ABCD is a parallelogram.
Therefore
AB = CD …(iv)
and, BC = AD …(v)
In ΔDEA and ΔADF,
∠DEA = ∠AFD [Each 90]
∠EAD = ∠ADF [EA II DF]
AD = AD [Common]
∴ΔEAD ≅ ΔFDA [AAS congruency rule]
⇒ EA = DF …(vi)
Adding equations (ii) and (iii), we have
DA² + AB² + 2EA AB + AD² + DC² – 2DC FD = DB² + AC²
⇒ DA² + AB² + AD² + DC² + 2EA × AB – 2DC × FD = DB² + AC²
⇒ BC² + AB² + AD² + DC² + 2EA × AB – 2AB × EA = DB² + AC² [From the equation (iv) and (vi)]
⇒ AB² + BC² + CD² + DA² = AC² + BD²
Let AB is 75 m high lighthouse and C and D are the two ships. In ΔABC, AB/BC = tan 45° ⇒ 75/BC = 1 ⇒ BC = 75 In ΔABD, AB/BD = tan 30° ⇒ 75/(BC + CD) = 1/√3 ⇒ 75/(75 + CD) = 1/√3 ⇒ 75 + CD = 75√3 ⇒ CD = 75(√3 - 1) Hence, the distance between the two ships is 75(√3 - 1).
Let AB is 75 m high lighthouse and C and D are the two ships.
In ΔABC,
AB/BC = tan 45° ⇒ 75/BC = 1
⇒ BC = 75
In ΔABD,
AB/BD = tan 30°
⇒ 75/(BC + CD) = 1/√3
⇒ 75/(75 + CD) = 1/√3
⇒ 75 + CD = 75√3
⇒ CD = 75(√3 – 1)
Hence, the distance between the two ships is 75(√3 – 1).
Let CD is 1.2m high girl and FG is the distance travelled by balloon. In ΔACE, AE/CE = tan 60° ⇒ (AF - EF)/CE = √3 ⇒ (88.2 - 1.2)/CE = √3 ⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3 In ΔBCG, BG/GC = tan 30° ⇒ 88.2 - 1.2/CG = 1/√3 ⇒ 87/CG = 1/√3 ⇒ CG = 87√3 Distance travelled by balloon = EG = CG - CERead more
Let CD is 1.2m high girl and FG is the distance travelled by balloon.
In ΔACE,
AE/CE = tan 60°
⇒ (AF – EF)/CE = √3
⇒ (88.2 – 1.2)/CE = √3
⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3
In ΔBCG,
BG/GC = tan 30° ⇒ 88.2 – 1.2/CG = 1/√3
⇒ 87/CG = 1/√3 ⇒ CG = 87√3
Distance travelled by balloon = EG = CG – CE = 87√3 – 29√3 = 58√3
Hence, the distance travelled by balloon is 58√3m.
ABC is a triangle in which ∠ ABC < 90° and AD ⊥ BC. Prove that AC² = AB² + BC² –2 BC . BD.
In ΔADB, by pythagoras theorem AD² + DB² = AB² ⇒ AD2 = AB2 - DB2 ...(1) In ΔADC, by pythagoras theorem, AD² + DC² = AC² ⇒ AB² - BD² + DC² = AC² [From the equation (1)] ⇒ AB² - BD² + (BC - BD)² = AC² ⇒ AC² = AB² - BD² + BC² + BD² - 2BC × BD = AB² + BC² - 2BC × BD
In ΔADB, by pythagoras theorem
See lessAD² + DB² = AB²
⇒ AD2 = AB2 – DB2 …(1)
In ΔADC, by pythagoras theorem, AD² + DC² = AC²
⇒ AB² – BD² + DC² = AC² [From the equation (1)]
⇒ AB² – BD² + (BC – BD)² = AC²
⇒ AC² = AB² – BD² + BC² + BD² – 2BC × BD = AB² + BC² – 2BC × BD
ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced. Prove that AC²= AB² + BC² + 2 BC . BD.
In ΔADB, by pythagoras theorem AB² = AD² + DB² ...(1) In ΔACD, by pythagoras theorem AC² = AD² + DC² ⇒AC² = AD² + (DB + BC)² ⇒AC² = AD² + BD² + BC² + 2DB BC ⇒AC² = AB² + BC² + 2DB × BC [From the equation (1)]
In ΔADB, by pythagoras theorem
See lessAB² = AD² + DB² …(1)
In ΔACD, by pythagoras theorem
AC² = AD² + DC²
⇒AC² = AD² + (DB + BC)²
⇒AC² = AD² + BD² + BC² + 2DB BC
⇒AC² = AB² + BC² + 2DB × BC [From the equation (1)]
Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA. In ΔDEA, by pythagoras theorem, DE² + EA² = DA² = ...(1) In ΔDEB. by pythagoras theorem, DE² + EB² = DB² ⇒ DE² + (EA + AB)² = DB² ⇒ (DE² + EA²) + AB² + 2EA × AB = DB² ⇒ DA² + AB² + 2EA × AB = DB² ...(ii) In ΔADF, by PythagoraRead more
In parallelogram ABCD, Altitudes AF and DE is drawn on DC and produced BA.
See lessIn ΔDEA, by pythagoras theorem, DE² + EA² = DA² = …(1)
In ΔDEB. by pythagoras theorem, DE² + EB² = DB²
⇒ DE² + (EA + AB)² = DB²
⇒ (DE² + EA²) + AB² + 2EA × AB = DB²
⇒ DA² + AB² + 2EA × AB = DB² …(ii)
In ΔADF, by Pythagoras theorem, AD² = AF² + FD²
In ΔAFC, by pythagoras theorem
AC² = AF² + FC² = AF² + (DC – FD)² = AF² + DC² + FD² – 2DC × FD
= (AF² + FD²) + DC² – 2DC × FD
⇒ AC² = AD² + DC² – 2DC × FD …(iii)
ABCD is a parallelogram.
Therefore
AB = CD …(iv)
and, BC = AD …(v)
In ΔDEA and ΔADF,
∠DEA = ∠AFD [Each 90]
∠EAD = ∠ADF [EA II DF]
AD = AD [Common]
∴ΔEAD ≅ ΔFDA [AAS congruency rule]
⇒ EA = DF …(vi)
Adding equations (ii) and (iii), we have
DA² + AB² + 2EA AB + AD² + DC² – 2DC FD = DB² + AC²
⇒ DA² + AB² + AD² + DC² + 2EA × AB – 2DC × FD = DB² + AC²
⇒ BC² + AB² + AD² + DC² + 2EA × AB – 2AB × EA = DB² + AC² [From the equation (iv) and (vi)]
⇒ AB² + BC² + CD² + DA² = AC² + BD²
As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
Let AB is 75 m high lighthouse and C and D are the two ships. In ΔABC, AB/BC = tan 45° ⇒ 75/BC = 1 ⇒ BC = 75 In ΔABD, AB/BD = tan 30° ⇒ 75/(BC + CD) = 1/√3 ⇒ 75/(75 + CD) = 1/√3 ⇒ 75 + CD = 75√3 ⇒ CD = 75(√3 - 1) Hence, the distance between the two ships is 75(√3 - 1).
Let AB is 75 m high lighthouse and C and D are the two ships.
See lessIn ΔABC,
AB/BC = tan 45° ⇒ 75/BC = 1
⇒ BC = 75
In ΔABD,
AB/BD = tan 30°
⇒ 75/(BC + CD) = 1/√3
⇒ 75/(75 + CD) = 1/√3
⇒ 75 + CD = 75√3
⇒ CD = 75(√3 – 1)
Hence, the distance between the two ships is 75(√3 – 1).
A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° Find the distance travelled by the balloon during the interval.
Let CD is 1.2m high girl and FG is the distance travelled by balloon. In ΔACE, AE/CE = tan 60° ⇒ (AF - EF)/CE = √3 ⇒ (88.2 - 1.2)/CE = √3 ⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3 In ΔBCG, BG/GC = tan 30° ⇒ 88.2 - 1.2/CG = 1/√3 ⇒ 87/CG = 1/√3 ⇒ CG = 87√3 Distance travelled by balloon = EG = CG - CERead more
Let CD is 1.2m high girl and FG is the distance travelled by balloon.
See lessIn ΔACE,
AE/CE = tan 60°
⇒ (AF – EF)/CE = √3
⇒ (88.2 – 1.2)/CE = √3
⇒ 87/CE = √3 ⇒ CE = 87/√3 = 87√3/3 = 29√3
In ΔBCG,
BG/GC = tan 30° ⇒ 88.2 – 1.2/CG = 1/√3
⇒ 87/CG = 1/√3 ⇒ CG = 87√3
Distance travelled by balloon = EG = CG – CE = 87√3 – 29√3 = 58√3
Hence, the distance travelled by balloon is 58√3m.