1. Draw BE⊥PQ and CF⊥RS. ∠1 = ∠2 ...(i)[∵ Angle of incident = Angle of reflection] Similarly, ∠3 = ∠4 ...(ii) and, ∠2 = ∠3 ...(iii)[∵ Alternate Angles] ⇒ ∠1 = ∠4 [From the equations (i), (ii) and (iii)] ⇒ 2∠1 = 2∠4 ⇒ ∠1 + ∠1 = ∠4 + ∠4 ⇒ ∠1 + ∠2 = ∠3 + ∠4 [From the equation (i) and (ii)] ⇒ ∠BCD = ∠ABC SRead more

    Draw BE⊥PQ and CF⊥RS.
    ∠1 = ∠2 …(i)[∵ Angle of incident = Angle of reflection]
    Similarly,
    ∠3 = ∠4 …(ii)
    and,
    ∠2 = ∠3 …(iii)[∵ Alternate Angles]
    ⇒ ∠1 = ∠4 [From the equations (i), (ii) and (iii)]
    ⇒ 2∠1 = 2∠4
    ⇒ ∠1 + ∠1 = ∠4 + ∠4
    ⇒ ∠1 + ∠2 = ∠3 + ∠4 [From the equation (i) and (ii)]
    ⇒ ∠BCD = ∠ABC
    Since, the alternate angles are equal. Hence, AB||CD.

    See less
    • 3
  2. Given that: ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75° In △PTR, ∠P + ∠R + ∠PTR = 180° ⇒ 95° + 40° + ∠PTR = 180° ⇒ 135° + ∠PTR = 180° ⇒ ∠PTR = 180° - 135° = 45° ∠STQ = ∠PTR [∵ Vertically Opposite Angles] ⇒ ∠STQ = 45° In △SQT, ∠STQ + ∠S + ∠SQT = 180° ⇒ 45° + 75° + ∠SQT = 180° ⇒ 120° + ∠SQT = 180° ⇒ ∠SQT =Read more

    Given that: ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°
    In △PTR, ∠P + ∠R + ∠PTR = 180°
    ⇒ 95° + 40° + ∠PTR = 180°
    ⇒ 135° + ∠PTR = 180°
    ⇒ ∠PTR = 180° – 135° = 45°
    ∠STQ = ∠PTR [∵ Vertically Opposite Angles]
    ⇒ ∠STQ = 45°
    In △SQT, ∠STQ + ∠S + ∠SQT = 180°
    ⇒ 45° + 75° + ∠SQT = 180°
    ⇒ 120° + ∠SQT = 180°
    ⇒ ∠SQT = 180° – 120° = 60°

    See less
    • 3
  3. ∠PRS is the exterior angle of △PQR. Therefore, ∠PRS = ∠QPR + ∠PQR ⇒ 1/2 ∠PRS = 1/2 ∠QPR + 1/2 ∠PQR ⇒ ∠TRS = 1/2 ∠QPR + ∠TQR ...(1)[∵ ∠TRS = 1/2 ∠PRS and ∠TQR = 1/2 ∠PQR] ∠TRS is exterior angle of △TQR Therefore, ∠TRS = ∠QTR + ∠TQR ...(2) From, the equations (1) and (2), we have ∠QTR + ∠TQR = 1/2 ∠QPRead more

    ∠PRS is the exterior angle of △PQR.
    Therefore,
    ∠PRS = ∠QPR + ∠PQR
    ⇒ 1/2 ∠PRS = 1/2 ∠QPR + 1/2 ∠PQR
    ⇒ ∠TRS = 1/2 ∠QPR + ∠TQR …(1)[∵ ∠TRS = 1/2 ∠PRS and ∠TQR = 1/2 ∠PQR]
    ∠TRS is exterior angle of △TQR
    Therefore,
    ∠TRS = ∠QTR + ∠TQR …(2)
    From, the equations (1) and (2), we have
    ∠QTR + ∠TQR = 1/2 ∠QPR + ∠TQR
    ⇒ ∠QTR = 1/2 ∠QPR

    See less
    • 3
  4. Given that: PQ⊥PS||SR, ∠SQR = 28° and ∠QRT = 65° ∠PQR = ∠QRT [∵ Alternate Angles] ⇒ ∠RQS + ∠PQS = 65° ⇒ 28° + x = 65° ⇒ x = 65° - 28° = 37° In △PQS, ∠P + ∠PQS + ∠PSQ = 180° ⇒ 90° + 37° + y = 180° ⇒ 127° + y = 180° ⇒ y = 180° - 127° = 53°

    Given that: PQ⊥PS||SR, ∠SQR = 28° and ∠QRT = 65°
    ∠PQR = ∠QRT [∵ Alternate Angles]
    ⇒ ∠RQS + ∠PQS = 65°
    ⇒ 28° + x = 65°
    ⇒ x = 65° – 28° = 37°
    In △PQS, ∠P + ∠PQS + ∠PSQ = 180°
    ⇒ 90° + 37° + y = 180°
    ⇒ 127° + y = 180°
    ⇒ y = 180° – 127° = 53°

    See less
    • 3
  5. Given that: PQ||ST, Therefore, ∠PQR = ∠APQ [∵ Alternate Angles] ⇒ x = 50° ∠APR = ∠PRD [∵ Alternate Angles] ⇒ ∠APQ + ∠QPR = 127° ⇒ 50° + y = 127° ⇒ y = 127° - 50° = 77°

    Given that: PQ||ST,
    Therefore,
    ∠PQR = ∠APQ [∵ Alternate Angles]
    ⇒ x = 50°
    ∠APR = ∠PRD [∵ Alternate Angles]
    ⇒ ∠APQ + ∠QPR = 127°
    ⇒ 50° + y = 127°
    ⇒ y = 127° – 50° = 77°

    See less
    • 2