1. Given: Diagonals AC = 30 cm and DB = 16 cm. Since the diagonals of the rhombus bisect at right angle to each other. Therefore, OD = DB/2 = 16/2 = 8cm And OC = AC/2 = 30/2 = 15 cm Now, In right angle triangle DOC, (DC)² = (OD)² + (OC)² [By Pythagoras theorem] ⇒ (DC)² = (8)² + (15)² ⇒ (DC)² = 64 + 225Read more

    Given: Diagonals AC = 30 cm and DB = 16 cm.
    Since the diagonals of the rhombus bisect at right angle to each other.
    Therefore, OD = DB/2 = 16/2 = 8cm
    And OC = AC/2 = 30/2 = 15 cm
    Now, In right angle triangle DOC,
    (DC)² = (OD)² + (OC)² [By Pythagoras theorem]
    ⇒ (DC)² = (8)² + (15)²
    ⇒ (DC)² = 64 + 225 = 289
    ⇒ DC = √289 = 17
    Perimeter of rhombus = 4 x side = 4 x 17 = 68 cm
    Thus, the perimeter of rhombus is 68 cm.

    Class 7 Maths Chapter 6 Exercise 6.5

    for more answers vist to:
    https://www.tiwariacademy.com/ncert-solutions/class-7/maths/chapter-6/

    See less
    • 6
  2. Given diagonal (PR) = 41 cm, length (PQ) = 40 cm Let breadth (QR) be x cm. Now, in right angled triangle PQR, (PR)² = (RQ)² + (PQ)² [By Pythagoras theorem] ⇒ (41)² = x² + 1600 ⇒ 1681 = x² + 1600 ⇒ x² = 1681 – 1600 ⇒ x² = 81 ⇒ x= √81 = 9 cm Therefore the breadth of the rectangle is 9 cm. Perimeter ofRead more

    Given diagonal (PR) = 41 cm, length (PQ) = 40 cm
    Let breadth (QR) be x cm.
    Now, in right angled triangle PQR,

    (PR)² = (RQ)² + (PQ)² [By Pythagoras theorem]
    ⇒ (41)² = x² + 1600
    ⇒ 1681 = x² + 1600
    ⇒ x² = 1681 – 1600
    ⇒ x² = 81
    ⇒ x= √81 = 9 cm
    Therefore the breadth of the rectangle is 9 cm.
    Perimeter of rectangle = 2(length + breadth)
    = 2 (9 + 49)
    = 2 x 49 = 98 cm
    Hence, the perimeter of the rectangle is 98 cm.

    Class 7 Maths Chapter 6 Exercise 6.5

    for more answers vist to:
    https://www.tiwariacademy.com/ncert-solutions/class-7/maths/chapter-6/

    See less
    • 6
  3. In ∆ PQR, ∠PQR + ∠QRP + ∠RPQ = 180° [By Angle sum property of a ∆ ] ⇒ 25° + 65° + ∠RPQ = 180 ⇒ 90° ∠RPQ=180° ⇒ ∠RPQ = 180° - 90° = 90° Thus, ∆ PQR is a right angled triangle, right angled at P. ∴ (Hypotenuse)² = (Base)² + (Perpendicular)² [By Pythagoras theorem] ⇒ (QR)² = (PR)² + (QP)² Hence, OptioRead more

    In ∆ PQR,
    ∠PQR + ∠QRP + ∠RPQ = 180° [By Angle sum property of a ∆ ]
    ⇒ 25° + 65° + ∠RPQ = 180
    ⇒ 90° ∠RPQ=180°
    ⇒ ∠RPQ = 180° – 90° = 90°
    Thus, ∆ PQR is a right angled triangle, right angled at P.
    ∴ (Hypotenuse)² = (Base)² + (Perpendicular)² [By Pythagoras theorem]
    ⇒ (QR)² = (PR)² + (QP)²
    Hence, Option (ii) is correct.

    Class 7 Maths Chapter 6 Exercise 6.5

    for more answers vist to:
    https://www.tiwariacademy.com/ncert-solutions/class-7/maths/chapter-6/

    See less
    • 6
  4. Let us consider, the larger side be the hypotenuse and also using Pythagoras theorem, (Hypotenuse)² = (Base)² + (Perpendicular)² (i) 2.5 cm, 6.5 cm, 6 cm In ∆ABC, (AC)² = (AB)² + (BC)² L.H.S. = (6.5)² = 42.25 cm R.H.S. = (6)² + (2.5)² = 36 + 6.25 = 42.25 cm Since, L.H.S. = R.H.S. Therefore, the giveRead more

    Let us consider, the larger side be the hypotenuse and also using Pythagoras theorem,
    (Hypotenuse)² = (Base)² + (Perpendicular)²
    (i) 2.5 cm, 6.5 cm, 6 cm
    In ∆ABC, (AC)² = (AB)² + (BC)²
    L.H.S. = (6.5)² = 42.25 cm
    R.H.S. = (6)² + (2.5)² = 36 + 6.25 = 42.25 cm
    Since, L.H.S. = R.H.S.
    Therefore, the given sides are of the right angled triangle.
    Right angle lies on the opposite to the greater side 6.5 cm, i.e., at B.

    (ii) 2 cm, 2 cm, 5 cm
    In the given triangle, (5)² = (2)² + (2)²
    L.H.S. = (5)² = 25
    R.H.S. = (2)² + (2)² = 4+4=8
    Since, L.H.S. ≠ R.H.S.
    Therefore, the given sides are not of the right angled triangle.

    (iii) 1.5 cm, 2 cm, 2.5 cm
    In ∆ PQR, (PR)² = (PQ)² + (RQ)²
    L.H.S. = (2.5)² = 6.25
    R.H.S. = (1.5)² + (2)² = 2.25 + 4 = 6.25 cm
    Since, L.H.S. = R.H.S.
    Therefore, the given sides are of the right angled triangle.
    Right angle lies on the opposite to the greater side 2.5 cm, i.e., at Q.

    Class 7 Maths Chapter 6 Exercise 6.5

    for more answers vist to:
    https://www.tiwariacademy.com/ncert-solutions/class-7/maths/chapter-6/

    See less
    • 6
  5. Let AC be the ladder and A be the window. Given: AC = 15 m, AB = 12 m, CB = a m In right angled triangle ACB, (Hypotenuse)² = (Base)² + (Perpendicular)² [By Pythagoras theorem] ⇒ (AC)² = (CB)² + (AB)² ⇒ (15)² = (a)² + (12)² ⇒ 225 = a² + 144 ⇒ a² = 225 – 144 = 81 ⇒ a √81 = 9 cm Thus, the distance ofRead more

    Let AC be the ladder and A be the window.
    Given: AC = 15 m, AB = 12 m, CB = a m
    In right angled triangle ACB,
    (Hypotenuse)² = (Base)² + (Perpendicular)² [By Pythagoras theorem]
    ⇒ (AC)² = (CB)² + (AB)²
    ⇒ (15)² = (a)² + (12)²
    ⇒ 225 = a² + 144
    ⇒ a² = 225 – 144 = 81
    ⇒ a √81 = 9 cm

    Thus, the distance of the foot of the ladder from the wall is 9 m.

    Class 7 Maths Chapter 6 Exercise 6.5

    for more answers vist to:
    https://www.tiwariacademy.com/ncert-solutions/class-7/maths/chapter-6/

    See less
    • 6