NCERT Solution for Class 10 Science Chapter 13
Magnetic Effects of Electric Current
NCERT Books for Session 2022-2023
CBSE Board and UP Board
Exercises Questions
Page No-241
Questions No-8
How does a solenoid behave like a magnet? Can you determine the north and south poles of a current–carrying solenoid with the help of a bar magnet? Explain.
Share
A solenoid begins behaving like a magnet when electric current flows through it. We know that any current carrying conductor creates a magnetic field around it and that is what happens in case of solenoid. For determining the different poles of a solenoid, we can use a bar magnet and look for interaction between different poles of two magnets. If the north pole of the bar magnet gets repulsed by a particular pole of the electromagnet (solenoid) then it gets confirmed that the bar magnet was brought near the north pole of the electromagnet.
When current is passed through a solenoid coil, magnetic field produced due to each turn of solenoid coil is in the same direction. As a resu1t, the resultant magnetic field become very strong and uniform. The field lines inside the solenoid are in the form of parallel straight lines along the axis of solenoid. Thus, the solenoid behaves like a bar magnet. One end of solenoid behaves as a magnetic North pole while the other end behaves as the South Pole.We can determine the magnetic poles formed in a solenoid. The end of the current-carrying solenoid, which attracts North Pole but repels South Pole of a bar magnet, is behaving as south magnetic pole. The other end, which attracts South Pole of a bar magnet but repels the North Pole, is behaving as north magnetic pole. It is because like poles repel but unlike poles attract each other.
For more answers visit to website:
https://www.tiwariacademy.com/ncert-solutions/class-10/science/chapter-13/
A solenoid is a long coil of circular loops of insulated copper wire. Magnetic field lines are produced around the solenoid when a current is allowed to flow through it. The field lines produced in a current-carrying solenoid is shown magnetic field line emerges from North pole towards South pole, whereas inside the solenoid magnetic field lines parallel.
When the north pole of a bar magnet is brought near the end to the negative terminal of the battery, the solenoid repels the bar magnet as like poles repel each other, the end connected to the negative terminal of the battery behaves as the north pole of the solenoid and the other end behaves as a south pole. So, one end of the solenoid behaves as a north pole and the other end behaves as a south pole.